线性代数入门
线性代数(Linear Algebra)是数学的重要分支之一,广泛应用于工程、计算机科学、物理学、经济学等领域。它主要研究向量、矩阵及其在空间中的变换。对于程序员来说,掌握线性代数的基础知识能够帮助更好地理解数据处理、机器学习等应用中的数学原理。本文将为你介绍线性代数的基本概念和核心内容。
一、基本概念
1. 向量(Vector)
向量是线性代数的核心元素,它可以看作一个有序数列。向量可以用来表示几何中的点、物理中的力等。向量通常用小写字母表示,如 ( \mathbf{v} ) 表示一个向量:
[ \mathbf{v} = \begin{bmatrix} v_1 \ v_2 \ \vdots \ v_n \end{bmatrix} ]
其中,( v_1, v_2, \dots, v_n ) 是向量的分量。向量的维度由其分量的个数决定。例如,三维向量 ( \mathbf{v} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} ) 有三个分量,属于三维空间。
2. 矩阵(Matrix)
矩阵是一个二维数组,由行(row)和列(column)组成。矩阵可以看作是多个向量的组合,广泛用于线性变换、方程求解等。矩阵通常用大写字母表示,如矩阵 ( A ):
[ A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} ]
矩阵中的每个元素 ( a_{ij} ) 表示矩阵第 ( i ) 行、第 ( j ) 列的值。例如,矩阵 ( A ) 是一个 ( 2 \times 2 ) 矩阵,因为它有 2 行和 2 列。
3. 标量(Scalar)
标量是一个简单的数,可以是实数或复数。标量用于缩放向量或矩阵中的元素。举例来说,给定一个向量 ( \mathbf{v} = \begin{bmatrix} 2 \ 3 \end{bmatrix} ) 和标量 ( c = 2 ),标量与向量的乘法 ( c\mathbf{v} ) 为:
[ c\mathbf{v} = \begin{bmatrix} 2 \times 2 \ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 4 \ 6 \end{bmatrix} ]
二、线性代数的核心运算
1. 向量加法
向量加法是指两个向量对应分量的逐项相加。假设 ( \mathbf{v_1} ) 和 ( \mathbf{v_2} ) 为两个向量:
[ \mathbf{v_1} = \begin{bmatrix} 1 \ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 3 \ 4 \end{bmatrix} ]
向量加法 ( \mathbf{v_1} + \mathbf{v_2} ) 为