linalg.lstsq()函数

linalg.lstsq()是NumPy线性代数模块(numpy.linalg)中的一个函数,用于求解线性最小二乘问题。它基于最小二乘法原理,通过最小化残差的平方和来估计线性方程组的最优解。

函数原型 

numpy.linalg.lstsq(a, b, rcond='warn')

参数

a:系数矩阵的二维数组。如AX=B中的A

b:代表因变量的一维或二维数组。如AX=B中的B

rcond:在计算广义逆矩阵时使用的奇异值截断值。

奇异值截断值是在奇异值分解(SVD)过程中使用的。

我曾在https://blog.csdn.net/m0_74121413/article/details/131944364?spm=1001.2014.3001.5501这篇博客里提到过。SVD是一种将矩阵分解为奇异向量和奇异值的技术。在广义逆矩阵的计算中,我们使用了奇异值分解来处理矩阵的非满秩情况。

截断奇异值意味着我们保留奇异值的最大值,将小于该值的奇异值视为零(有点类似于阈值处理)

通过将较小的奇异值截断为零,可以减小计算的复杂性,并增加计算的稳定性。

默认rcond=‘warn’,指的是当遇到很小的奇异值时,会产生警告信息。

返回值

x:包含最小二乘解的二维数组。

residuals:残差的平方和。残差指的是真实值与观测值的差。

rank:矩阵a的秩。

s:矩阵a的奇异值。

代码测试

import numpy as np
from numpy.linalg import lstsq

# 构造一个线性方程组
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([1, 2, 3])

# 求解线性最小二乘问题
x, residuals, rank, s = lstsq(a, b)

# 输出结果
print("最小二乘解:", x)
print("残差平方和:", residuals)
print("系数矩阵秩:", rank)
print("系数矩阵奇异值:", s)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值