linalg.lstsq()
是NumPy线性代数模块(numpy.linalg
)中的一个函数,用于求解线性最小二乘问题。它基于最小二乘法原理,通过最小化残差的平方和来估计线性方程组的最优解。
函数原型
numpy.linalg.lstsq(a, b, rcond='warn')
参数
a
:系数矩阵的二维数组。如AX=B中的A
b
:代表因变量的一维或二维数组。如AX=B中的B
rcond
:在计算广义逆矩阵时使用的奇异值截断值。
奇异值截断值是在奇异值分解(SVD)过程中使用的。
我曾在https://blog.csdn.net/m0_74121413/article/details/131944364?spm=1001.2014.3001.5501这篇博客里提到过。SVD是一种将矩阵分解为奇异向量和奇异值的技术。在广义逆矩阵的计算中,我们使用了奇异值分解来处理矩阵的非满秩情况。
截断奇异值意味着我们保留奇异值的最大值,将小于该值的奇异值视为零(有点类似于阈值处理)
通过将较小的奇异值截断为零,可以减小计算的复杂性,并增加计算的稳定性。
默认rcond=‘warn’,指的是当遇到很小的奇异值时,会产生警告信息。
返回值
x
:包含最小二乘解的二维数组。
residuals
:残差的平方和。残差指的是真实值与观测值的差。
rank
:矩阵a
的秩。
s
:矩阵a
的奇异值。
代码测试
import numpy as np
from numpy.linalg import lstsq
# 构造一个线性方程组
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([1, 2, 3])
# 求解线性最小二乘问题
x, residuals, rank, s = lstsq(a, b)
# 输出结果
print("最小二乘解:", x)
print("残差平方和:", residuals)
print("系数矩阵秩:", rank)
print("系数矩阵奇异值:", s)