numpy 基础 —— np.linalg

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lanchunhui/article/details/51004387
  • (1)np.linalg.inv():矩阵求逆
  • (2)np.linalg.det():矩阵求行列式(标量)

np.linalg.norm

顾名思义,linalg=linear+algebranorm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar)

首先help(np.linalg.norm)查看其文档:

norm(x, ord=None, axis=None, keepdims=False)

这里我们只对常用设置进行说明,x表示要度量的向量,ord表示范数的种类,

参数 说明 计算方法
默认 二范数:2 x21+x22++x2n
ord=2 二范数:2 同上
ord=1 一范数:1 |x1|+|x2|++|xn|
ord=np.inf 无穷范数: max(|xi|)
>>> x = np.array([3, 4])
>>> np.linalg.norm(x)
5.
>>> np.linalg.norm(x, ord=2)
5.
>>> np.linalg.norm(x, ord=1)
7.
>>> np.linalg.norm(x, ord=np.inf)
4

范数理论的一个小推论告诉我们:12

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭