conda安装cuda(11.8)+cudnn(8.9.2)+pytorch(2.0.0)

目录

1、从 NVIDIA 安装 CUDA 11.8.0

正式开始的分界线(可以从这里开始看)

2、下载cudnn

3、下载pytorch

4、检查


把cuda用conda安装在名为env_1的虚拟环境中,python=3.10:

conda create --name env_1 python=3.10 #创建一个名为env_1的环境

1、从 NVIDIA 安装 CUDA 11.8.0

Cuda | Anaconda.org中找到你要下载的版本的指令(有错,但已解决,先往下看先不要动手,可以从目录跳转到正式开始的分界线

 但是通过nvcc -V检查发现版本不对:

 参考链接:(无意间刷到一个博主发现遇到了同样的问题,且提出了解决办法)Conda安装cuda指定版本遇到的一个大坑,导致pytorch无法使用cuda且nvcc -V显示错误的cuda版本_conda虚拟环境cuda不能用-CSDN博客

解决办法:把刚才下载的删掉重下:

conda remove cuda 
conda list #检查是否删掉了

 先激活你要下载cuda的环境,不然下错了还是挺麻烦的:


正式开始的分界线(可以从这里开始看)

conda activate env_1 #激活环境,env_1是你要用的虚拟环境
conda install nvidia/label/cuda-11.8.0::cuda --channel nvidia/label/cuda-11.8.0

2、下载cudnn

参考链接:Linux 的 anaconda 虚拟环境下安装指定的 cuda、cudnn、pytorch_linux虚拟环境里的cuda11.1.1 对应cudnn-CSDN博客 创建一个文件夹用来保存你要下载的cudnn安装包:

mkdir tmp

 进入文件夹:

cd tmp

查看conda支持的cudnn版本:

conda search cudnn --info

找到对应的cudnn版本,并复制url对应的链接:

 下载:

wget 复制的链接 #下载

查看下载的安装包:

ls

 安装:

conda install 下载的安装包

检查是否下载成功:

conda list

3、下载pytorch

在以下链接中找到cuda对应的pytorch版本及下载指令:

Previous PyTorch Versions | PyTorch

4、检查

python
import torch

什么都没出现说明pytorch安装成功

torch.cuda.is_available()

出现True说明成功

### 如何在 Conda安装配置 CUDA #### 创建新的 Conda 环境并指定 Python 版本 为了确保环境干净无冲突,建议先创建一个新的 Conda 环境,并指明所需的 Python 版本: ```bash conda create -n gpu_env python=3.8 ``` 激活新创建的环境以便后续操作: ```bash conda activate gpu_env ``` #### 安装 CUDAToolkit CUDAToolkit 是 NVIDIA 提供的一套用于开发 GPU 加速应用的基础库集合,在 Conda 环境中可以通过如下命令来安装特定版本CUDAToolkit: 对于需要安装具体版本的情况,比如 11.8.0 的情况可以这样操作: ```bash conda install cudatoolkit==11.8.0 ``` 如果想要安装其他版本,则替换上述命令中的版本号部分。 #### 验证安装成功与否 完成以上步骤之后,应该验证一下是否正确安装CUDAToolkit。可以在终端运行 `nvcc --version` 来查看当前使用的 CUDA 编译器版本[^2]。 #### 设置环境变量(可选) 通常情况下,Conda 已经处理好了大部分必要的环境变量设置工作;但是如果有特殊情况或者遇到问题时可能还需要手动调整 PATH 或者 LD_LIBRARY_PATH 这样的环境变量。不过按照描述,这里提到由于系统本身已有 CUDA 安装因此选择了不修改全局环境变量的方式[^5]。 #### 安装 cuDNNcuDNN 是针对深度神经网络优化过的高性能数学函数库,很多框架依赖它实现高效的卷积运算等功能。一般而言,当通过 Conda 安装好相应的 CUDAToolkit 后可以直接获取匹配好的 cuDNN 而不需要单独去官网下载二进制文件再解压到相应目录下。但如果确实有需求也可以参照官方文档说明来进行额外的手动安装过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值