conda安装cuda(11.8)+cudnn(8.9.2)+pytorch(2.0.0)

目录

1、从 NVIDIA 安装 CUDA 11.8.0

正式开始的分界线(可以从这里开始看)

2、下载cudnn

3、下载pytorch

4、检查


把cuda用conda安装在名为env_1的虚拟环境中,python=3.10:

conda create --name env_1 python=3.10 #创建一个名为env_1的环境

1、从 NVIDIA 安装 CUDA 11.8.0

Cuda | Anaconda.org中找到你要下载的版本的指令(有错,但已解决,先往下看先不要动手,可以从目录跳转到正式开始的分界线

 但是通过nvcc -V检查发现版本不对:

 参考链接:(无意间刷到一个博主发现遇到了同样的问题,且提出了解决办法)Conda安装cuda指定版本遇到的一个大坑,导致pytorch无法使用cuda且nvcc -V显示错误的cuda版本_conda虚拟环境cuda不能用-CSDN博客

解决办法:把刚才下载的删掉重下:

conda remove cuda 
conda list #检查是否删掉了

 先激活你要下载cuda的环境,不然下错了还是挺麻烦的:


正式开始的分界线(可以从这里开始看)

conda activate env_1 #激活环境,env_1是你要用的虚拟环境
conda install nvidia/label/cuda-11.8.0::cuda --channel nvidia/label/cuda-11.8.0

2、下载cudnn

参考链接:Linux 的 anaconda 虚拟环境下安装指定的 cuda、cudnn、pytorch_linux虚拟环境里的cuda11.1.1 对应cudnn-CSDN博客 创建一个文件夹用来保存你要下载的cudnn安装包:

mkdir tmp

 进入文件夹:

cd tmp

查看conda支持的cudnn版本:

conda search cudnn --info

找到对应的cudnn版本,并复制url对应的链接:

 下载:

wget 复制的链接 #下载

查看下载的安装包:

ls

 安装:

conda install 下载的安装包

检查是否下载成功:

conda list

3、下载pytorch

在以下链接中找到cuda对应的pytorch版本及下载指令:

Previous PyTorch Versions | PyTorch

4、检查

python
import torch

什么都没出现说明pytorch安装成功

torch.cuda.is_available()

出现True说明成功

<think>好的,我现在需要解决用户在安装本地PyTorch包后仍然遇到ModuleNotFoundError的问题,特别是错误信息显示“No module named &#39;torch’”。用户已经尝试使用命令conda install --use-local pytorch,但问题依旧存在。我需要根据提供的引用信息以及我的知识库来找到可能的原因和解决方案。 首先,用户提到安装本地PyTorch包,这可能意味着他们从本地源安装,而不是从官方渠道。这可能导致依赖项未正确安装或者安装路径有问题。根据引用[2],PyTorch版本兼容性很重要,如果用户安装版本与系统环境不兼容,可能会导致问题。比如,用户可能安装了不适合其CUDA版本或Python版本PyTorch包。需要确认用户安装PyTorch版本是否与他们的Python环境、CUDA版本等匹配。 其次,引用[3]中提到缺少six模块的情况,解决方法是使用conda install six。类似地,如果torch模块未被正确安装,可能是因为依赖项未安装或者安装过程中出现错误。用户使用--use-local参数可能绕过了某些依赖检查,导致依赖项未正确安装。需要检查是否所有依赖项都已安装,如Python版本CUDA工具包等。 另外,用户可能在安装后没有激活正确的conda环境,或者安装到了错误的环境中。需要确认用户是否在安装PyTorch的环境下运行Python,并且是否激活了该环境。例如,在Anaconda中,如果没有激活环境,可能会使用系统Python而不是conda环境中的,导致找不到模块。 此外,用户可能安装的本地包存在问题,比如文件损坏或不完整。需要建议用户验证本地包的完整性,或者尝试从官方渠道安装。根据引用[2],用户可能需要尝试不同版本PyTorch,尤其是较旧的版本,以避免兼容性问题。 可能的解决方案步骤包括: 1. 确认当前conda环境是否正确激活。 2. 检查PyTorch是否确实安装在当前环境中。 3. 验证PyTorch版本与Python、CUDA的兼容性。 4. 检查依赖项是否安装完全。 5. 尝试从官方源重新安装,或指定正确的版本。 需要将这些步骤详细列出,并参考提供的引用信息,如引用[2]中的安装命令示例,来指导用户正确安装。此外,提醒用户检查CUDA是否可用,如引用[1]中的方法,使用torch.cuda.is_available()来确认安装是否成功。 最后,可能需要处理用户本地安装包的问题,建议用户清理环境并重新安装,或者使用conda的强制安装选项,确保所有依赖项被正确安装。</think>针对安装本地PyTorch包后仍出现`ModuleNotFoundError: No module named &#39;torch&#39;`的问题,以下是分步解决方案: --- ### **1. 验证当前Conda环境状态** - **检查是否激活了正确的环境** 在Anaconda终端中执行: ```bash conda info --envs ``` 确保目标环境(安装PyTorch的环境)前有`*`标记。若未激活,使用: ```bash conda activate 环境名 ``` - **检查PyTorch是否存在于当前环境** ```bash conda list | grep torch ``` 若无输出,说明PyTorch未正确安装[^2]。 --- ### **2. 排查本地安装包的问题** - **确认本地包路径正确** 使用`conda install --use-local`时需确保本地包的路径已添加到Conda的搜索路径。可通过以下命令查看: ```bash conda config --show channels ``` 若本地包未在列,需手动指定路径: ```bash conda install --use-local /完整路径/pytorch-package.tar.bz2 ``` - **重新构建本地包索引** 执行以下命令刷新索引: ```bash conda index /本地包目录 ``` --- ### **3. 强制重新安装依赖项** 若本地包依赖项未自动安装,需手动指定: ```bash conda install --use-local pytorch -c pytorch -c nvidia --override-channels ``` 此命令会强制从本地安装PyTorch,但依赖项从官方源获取。 --- ### **4. 检查Python解释器路径** 在Python环境中执行以下代码,验证Python解释器路径是否指向当前Conda环境: ```python import sys print(sys.executable) ``` 若路径显示为系统Python而非Conda环境路径,需重新激活环境或检查环境配置。 --- ### **5. 手动安装缺失依赖项** 若报错提示其他模块缺失(如`six`),直接通过Conda安装: ```bash conda install six numpy cffi # 常见依赖项[^3] ``` --- ### **6. 备选方案:从官方源安装** 若本地包问题无法解决,直接使用官方推荐的安装命令(需调整版本号): ```bash conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.1 pytorch-cuda=11.8 -c pytorch -c nvidia ``` 完成后验证安装: ```python import torch print(torch.__version__, torch.cuda.is_available()) # 应输出版本和True[^1] ``` --- ### **总结流程图** ``` 环境未激活 → 激活环境 → 检查torch是否存在 ↓ torch不存在 → 检查本地包路径 → 强制安装依赖 ↓ 依赖缺失 → 手动安装 → 验证Python路径 ↓ 最终失败 → 改用官方源安装 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值