目录
汉诺塔递归
汉诺塔是一个经典问题,相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置n个金盘。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
汉诺塔以及其衍生问题往往使用递归来求解,也是学习和理解递归很好的老师。
其伪代码如下
Function Hanoi(n,a,b,c)
if n==1 then
print(a+'->'+c)
else
Hanoi(n-1,a,c,b)
print(a+'->'+c)
Hanoi(n-1,b,a,c)
end if
end Function
定义递归函数hanoi(n,a,b,c)表示将n个盘子从a柱移动到c柱,以b柱为辅助柱。
维护定义的含义,内部逻辑先将n-1个盘子从a柱移动到b柱,以c柱为辅助柱。再将最大盘子从a柱移动到c柱,以b柱为辅助柱。最后将n-1个盘子从b柱移动到c柱,以a柱为辅助柱。
递归结束出口为n==1时,从a柱移动到c柱,以b柱为辅助柱。
C++代码
#include <iostream>
using namespace std;
// 函数声明
void hanoi(int n, char a, char b, char c) {
if (n == 1) {
cout << a << "->" << c<< endl;
return;
}
hanoi(n-1, a, c, b);
cout << a << " -> " << c<< endl;
hanoi(n-1, b, a, c);
}
汉诺塔子移动次数的计算
牛牛的汉诺塔
链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
汉诺塔是一个经典问题,相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置n个金盘。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
汉诺塔以及其衍生问题往往使用递归来求解,也是学习和理解递归很好的老师。
其伪代码如下
Function Hanoi(n,a,b,c)
if n==1 then
print(a+'->'+c)
else
Hanoi(n-1,a,c,b)
print(a+'->'+c)
Hanoi(n-1,b,a,c)
end if
end Function
牛牛很快就理解了代码的意思并且写出了求解汉诺塔的程序,他现在想研究汉诺塔的规律。
请你统计以下信息:A->B,A->C,B->A,B->C,C->A,C->B的次数,以及所有移动的总步数。
输入描述:
仅一行,输入一个正整数n(1≤n≤60)(1 leq n leq 60)(1≤n≤60)表示汉诺塔的层数。
输出描述:
首先输出6行
A->B:XX
A->C:XX
B->A:XX
B->C:XX
C->A:XX
C->B:XX
分别表示每种移动情况出现的次数
最后输出一行
SUM:XX
表示所有移动情况的总和。
示例1
输入
复制3
3
输出
复制A->B:1 A->C:3 B->A:1 B->C:1 C->A:0 C->B:1 SUM:7
A->B:1
A->C:3
B->A:1
B->C:1
C->A:0
C->B:1
SUM:7
说明
伪代码所示算法的移动序列如下:
A->C
A->B
C->B
A->C
B->A
B->C
A->C
统计:
A->B出现1次
A->C出现3次
B->C出现1次
B->A出现1次
C->B出现1次
总计7次
选择正常的递归模拟计算子移动次数
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
LL N = 1000005;
LL MOD = 1e4 + 7;
LL N1 = 10005;
void Hanoi(int n, char a, char b, char c, int& count_ab, int& count_ac, int& count_ba, int& count_bc, int& count_ca, int& count_cb) {
if (a == 'A' && c == 'B') count_ab++;
if (a == 'A' && c == 'C') count_ac++;
if (a == 'B' && c == 'A') count_ba++;
if (a == 'B' && c == 'C') count_bc++;
if (a == 'C' && c == 'A') count_ca++;
if (a == 'C' && c == 'B') count_cb++;
if (n == 1) {
return;
} else {
Hano