C++算法(Acwing)学习(持续更新中)---单源最短路问题的简单应用

本文介绍了在图论中处理单源最短路问题的几种常见方法,包括朴素Dijkstra算法(稠密图)、堆优化Dijkstra算法(稀疏图)、以及处理有负权边的Bellman-Ford和SPFA算法。同时提及了多源最短路的Floyd算法和边数限制的特殊情况。
摘要由CSDN通过智能技术生成

单源☞一个起点

单源最短路的常见解题思路

1)边权均非负:朴素dijkstra算法(稠密图),堆优化dijkstra算法(稀疏图)

2)有负权边:bellman-ford,spfa(99%)

多源最短路----Floyd算法----O(n*n*n)

Acwing849. Dijkstra求最短路 I---------朴素dijkstra算法(稠密图)O(n*n) n表示点数

Acwing850. Dijkstra求最短路 II---------堆优化dijkstra算法(稀疏图)O(mlogn) m表示遍数

Acwing849. 853. 有边数限制的最短路I-------bellman-ford    O(nm)

AcWing 851. spfa求最短路--------SPFA  O(m),最坏O(nm)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值