关于计算机视觉

计算机视觉技术涉及图像理解,包括图像分类、目标检测和图像分割等核心任务,广泛应用在医学、工业和农业领域,如疾病诊断、工业检测和精准农业。这项技术依赖于图像处理、深度学习算法和硬件性能的提升。
摘要由CSDN通过智能技术生成

计算机视觉是指用摄像机和电脑及其他相关设备,对生物视觉的一种模拟。它的主要任务是让计算机理解图片或者视频中的内容,就像人类和许多其他生物每天所做的那样。

一、计算机视觉技术的研究内容

计算机视觉技术又被称为图像理解,它主要是研究在特定环境下,如何从图像中获取任务所需求的视觉信息,用更为通俗的话来讲,便是利用相关的图像处理方法去得到人们想要的图像信息。计算机视觉技术的主要研究内容和目的主要有三点:一是通过对于图像的数据分析,利用图像中的参照物对物体间的距离进行计算,从而得到图像中的距离数据。二是对图像进行分析,通过对于图像中的数据了解到物体在运动时的一些运动参数。三是通过对图像的计算和分析了解到图像中特定物体所具备的一些物理特性和相关参数。通过以上三点数据,便能够对图像中的特定物体进行深入地了解,得到物体的相关具体信息,但是由于目前计算机无法实现对于三维图像的识别,通常要将其转化为二维图像的投影,通过一幅或多幅二维图像投影来实现对物体数据的分析。

计算机视觉技术所涉及到的学科和技术相对较多,通常需要从多个角度出发去研究该项技术才能实现计算机视觉技术的发展。计算机视觉技术的最终目的,是要实现像人类一样去对图像进行识别和处理,得到智能化的相关数据,但是目前的相关技术并不能够实现这样的图像采集效果,这就需要从多个角度出发不断对其进行研究。首先视觉技术的主要目的便是实现对图像的识别和处理,因此首要任务便是要在图像设备上实现技术突破。要在光学元件上寻求突破,保证图像采集的过程中能够实现高清,甚至融入3D 图像的采集技术,还需从计算机的相关硬件着手提高计算机的相关性能。其次要提高计算机的算法和数据处理方式,使计算机能够更加快速地对图像进行分析和处理,这需要在计算机软件方面寻求技术突破。将数字化技术实现在图像处理方面的相关系统,能够有效地利用计算机的相关理论知识实现系统内的数据转换和图像分析。

我们可以将其任务目标拆分为:

让计算机理解图片中的场景(办公室,客厅,咖啡厅等)
让计算机识别场景中包含的物体(宠物,交通工具,人等)
让计算机定位物体在图像中的位置(物体的大小,边界等)
让计算机理解物体之间的关系或行为(是在对话,比赛或吵架等),以及图像表达的意义(喜庆的,悲伤的等)

那我们在OpenCV阶段,主要学习图像处理,而图像处理主要目的是对图像的处理,比如平滑,缩放等,想、从而为其他任务(比如“计算机视觉”)做好前期工作。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值