(计算机毕设选题推荐)基于协同过滤算法的图书推荐系统设计与实现

                                                         摘要

        本文设计并实现了一个基于协同过滤算法的图书推荐系统,该系统旨在通过分析用户的阅读行为和历史数据,为用户提供个性化的图书推荐服务。首先,系统利用用户-图书评分矩阵构建用户相似度和物品(图书)相似度模型;然后,通过用户基协同过滤或物品基协同过滤,或二者的混合方式,生成推荐列表;最后,通过优化算法和用户体验设计,提高推荐的准确性和用户满意度。实验结果表明,该系统在提升图书推荐精度和用户体验方面表现出色。

关键字: 协同过滤,图书推荐系统,个性化推荐,用户行为分析,大数据
 

                                                             Abstract

        This paper designs and implements a book recommendation system based on collaborative filtering algorithms. The system aims to provide personalized book recommendations for users by analyzing their reading behaviors and historical data. Firstly, the system constructs user similarity and item (book) similarity models using user-book rating matrices. Then, it generates recommendation lists through user-based collaborative filtering, item-based collaborative filtering, or a hybrid approach of both. Finally, the system enhances recommendation accuracy and user satisfaction through optimization algorithms and user experience design. Experimental results demonstrate that the system performs well in improving book recommendation precision and user experience.

Keywords: Collaborative Filtering, Book Recommendation System, Personalized Recommendation, User Behavior Analysis, Big Data
 

目录

第一章 引言

  • 1.1 研究背景与意义
  • 1.2 国内外研究现状
  • 1.3 研究内容与目标
  • 1.4 论文组织结构

第二章 相关技术基础

  • 2.1 协同过滤算法概述
    • 2.1.1 用户基协同过滤
    • 2.1.2 物品基协同过滤
    • 2.1.3 混合协同过滤
  • 2.2 推荐系统评价指标
  • 2.3 大数据处理技术简介

第三章 系统设计与实现

  • 3.1 系统架构设计
  • 3.2 数据收集与预处理
  • 3.3 推荐算法实现
    • 3.3.1 算法选择与优化
    • 3.3.2 相似度计算方法
    • 3.3.3 推荐列表生成
  • 3.4 系统界面与交互设计

第四章 实验与结果分析

  • 4.1 实验环境搭建
  • 4.2 数据集描述
  • 4.3 实验设计与实施
  • 4.4 结果分析与讨论

第五章 结论与展望

  • 5.1 研究总结
  • 5.2 存在的问题与不足
  • 5.3 未来研究方向

参考文献

  1. 李晓明, 闫宏飞, 王继民. 搜索引擎:原理、技术与系统[M]. 北京:科学出版社, 2012.
  2. 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.
  3. 张华平, 刘群. 自然语言处理基础与前沿[M]. 北京:科学出版社, 2018.
  4. 王姝, 冯志勇, 徐志伟. 面向大数据的分布式存储与索引技术[J]. 计算机学报, 2014, 37(1): 1-18.
  5. 王国霞, 刘贺平. 个性化推荐系统综述[J]. 计算机工程与应用, 2012, 48(7): 66-76.
  6. 赵文清, 侯莹莹, 武晓春. 基于用户画像的图书馆个性化推荐系统研究[J]. 情报理论与实践, 2019, 42(4): 125-130.
  7. 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1): 1-15.
  8. 张锋, 常会友. 使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J]. 计算机研究与发展, 2006, 43(4): 667-672.
  9. 陈志敏, 蒋翠清, 刘政民. 基于用户相似度的协同过滤推荐算法[J]. 计算机工程与设计, 2013, 34(8): 2864-2868.
  10. 王智圣, 李琪, 汪静. 基于用户画像的协同过滤推荐算法研究[J]. 情报科学, 2019, 37(7): 56-62.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值