(计算机毕设选题推荐)基于大数据技术的租房数据分析与研究

摘要

本文围绕大数据技术在租房市场中的应用,深入分析了租房数据的收集、处理、分析及挖掘过程。通过构建基于大数据的租房数据平台,整合多源异构数据,运用数据清洗、预处理、特征提取等技术手段,对租房市场的供需关系、价格趋势、区域热点及用户行为模式等进行了全面剖析。研究结果表明,大数据技术能够有效提升租房数据分析的精度与效率,为租房平台、房东、租客及政策制定者提供有价值的决策支持。本文还探讨了大数据技术在租房市场中的潜在应用前景与挑战,并提出了相应的解决方案。

关键字:大数据技术,租房数据分析,数据挖掘,供需关系,价格趋势

Abstract

This paper focuses on the application of big data technology in the rental housing market, conducting a thorough analysis of the process of collecting, processing, analyzing, and mining rental housing data. By establishing a big data-based rental housing data platform, we integrate multi-source heterogeneous data and employ techniques such as data cleaning, preprocessing, and feature extraction to comprehensively examine the supply-demand relationship, price trends, regional hotspots, and user behavior patterns in the rental market. The research findings indicate that big data technology can significantly enhance the accuracy and efficiency of rental housing data analysis, providing valuable decision support for rental platforms, landlords, tenants, and policymakers. Furthermore, the paper discusses the potential application prospects and challenges of big data technology in the rental market, proposing corresponding solutions.

Keywords: Big Data Technology, Rental Housing Data Analysis, Data Mining, Supply-Demand Relationship, Price Trends

目录

基于大数据技术的租房数据分析与研究

摘要

Abstract

第一章 引言

1.1 研究背景与意义

1.2 研究目标与问题

1.3 研究方法与技术路线

1.4 论文结构安排

第二章 文献综述

2.1 国内外租房市场研究现状

2.2 大数据技术在租房市场的应用

2.3 数据分析方法综述

第三章 数据收集与预处理

3.1 数据来源与收集方法

3.2 数据清洗与预处理

3.3 数据特征提取

第四章 租房数据分析方法

4.1 描述性统计分析

4.2 相关性分析

4.3 聚类分析

4.4 预测模型构建

第五章 租房市场数据分析与结果

5.1 影响因素分析

5.2 市场细分分析

5.3 趋势预测分析

第六章 结论与建议

6.1 研究结论

6.2 政策建议

6.3 研究局限与未来展望

参考文献

参考文献

  1. 杨奕名,郭玉婷. 大数据技术在房地产市场中的应用研究[J]. 中国房地产, 2022, (3): 45-50.
  2. 张琦芸,邓淑芬. 基于大数据的租房市场分析与预测[J]. 数据分析与知识发现, 2021, 5(6): 67-74.
  3. 郭美慧,蔡智强. 数据挖掘技术在租房平台用户行为分析中的应用[J]. 计算机工程与应用, 2020, 56(18): 23-29.
  4. 程明辉,陈弘善. 大数据背景下租房价格趋势预测模型研究[J]. 价格理论与实践, 2019, (10): 102-105.
  5. 刘佩儒,陈韦贞. 租房市场供需关系分析及调控策略研究[J]. 城市发展研究, 2021, 28(5): 11-17.
  6. 陈思桦,井弘坤. 基于大数据的租房用户画像构建与应用[J]. 计算机应用与软件, 2020, 37(6): 24-30.
  7. 林秋萍,柯美惠. 租房市场区域热点识别与评估方法研究[J]. 地理空间信息, 2019, 17(8): 34-38.
  8. 林书祯,黄政霖. 大数据技术在租房信息平台优化中的应用[J]. 信息系统工程, 2021, (7): 90-93.
  9. 蔡思妤,黄伟成. 租房市场数据可视化研究与实践[J]. 中国市场, 2020, (30): 12-15.
  10. 李仲伦,曾家盈. 租房市场数据质量评估与提升策略研究[J]. 情报杂志, 2019, 38(10): 161-167.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值