摘要
本文围绕“基于Hadoop的天猫用户复购预测的数据分析与研究”这一主题,深入探讨了大数据环境下用户复购行为的预测模型构建与优化。首先,利用Hadoop分布式处理框架对天猫平台的海量用户交易数据进行高效存储与预处理,包括数据清洗、去重、转换等步骤,以提高数据质量。随后,采用多种数据挖掘技术,如关联规则分析、聚类分析、分类与回归算法等,对用户购买行为特征进行深度挖掘,识别影响用户复购的关键因素。在此基础上,构建了基于机器学习算法的复购预测模型,并通过模型评估与调优,确保预测结果的准确性和可靠性。最后,对模型的实际应用效果进行了评估,并提出了针对性的营销策略建议,为电商平台提升用户复购率提供了有力支持。
关键字:Hadoop, 大数据, 用户复购预测, 数据挖掘, 机器学习, 天猫, 分布式处理, 关联规则, 聚类分析, 营销策略
Abstract
This paper focuses on the theme of "Data Analysis and Research on Repurchase Prediction of Tmall Users Based on Hadoop". It delves into the construction and optimization of prediction models for user repurchase behavior in the context of big data. Initially, the Hadoop distributed processing framework is utilized to efficiently store and preprocess the massive user transaction data from the Tmall platform, including data cleaning, deduplication, and transformation, to enhance data quality. Subsequently, various data mining techniques, such as association rule analysis, clustering analysis, and classification and regression algorithms, are employed to deeply mine user purchase behavior characteristics and identify key factors influencing user repurchases. Based on these insights, a repurchase prediction model is constructed using machine learning algorithms, and its accuracy and reliability are ensured through model evaluation and optimization. Finally, the practical application effects of the model are evaluated, and targeted marketing strategy suggestions are proposed to support e-commerce platforms in enhancing user repurchase rates.
Keywords: Hadoop, Big Data, User Repurchase Prediction, Data Mining, Machine Learning, Tmall, Distributed Processing, Association Rules, Clustering Analysis, Marketing Strategy
目录
第一章 引言
- 1.1 研究背景与意义
- 1.2 国内外研究现状
- 1.3 研究内容与目标
- 1.4 论文结构安排
第二章 相关理论与技术基础
- 2.1 Hadoop分布式处理框架概述
- 2.2 数据挖掘技术与方法
- 2.3 机器学习算法在复购预测中的应用
- 2.4 数据可视化技术
第三章 天猫用户交易数据处理
- 3.1 数据来源与描述
- 3.2 数据预处理流程
- 3.3 数据存储与管理
第四章 用户购买行为特征分析
- 4.1 用户行为数据解析
- 4.2 关联规则分析
- 4.3 聚类分析
第五章 复购预测模型构建
- 5.1 特征选择与工程
- 5.2 机器学习算法比较与选择
- 5.3 模型训练与评估
- 5.4 模型调优
第六章 预测结果分析与应用
- 6.1 预测结果解读
- 6.2 营销策略建议
- 6.3 模型应用效果评估
第七章 结论与展望
- 7.1 研究总结
- 7.2 研究成果与创新点
- 7.3 研究局限与未来展望
参考文献
附录
参考文献
- 李明, 王强. 基于Hadoop的大数据处理技术研究[J]. 计算机工程与应用, 2020, 56(12): 1-8.
- 张伟, 赵丽. 数据挖掘在电子商务用户行为分析中的应用[J]. 数据分析与知识发现, 2019, 3(4): 12-19.
- 刘晓, 陈晨. 机器学习算法在电商用户复购预测中的研究[J]. 计算机应用研究, 2021, 38(2): 456-460.
- 王磊, 李娜. Hadoop平台下的大数据存储与处理技术[J]. 计算机系统应用, 2020, 29(1): 156-162.
- 郑洁, 杨帆. 关联规则在电商用户购物篮分析中的应用[J]. 电子商务, 2019, (10): 67-72.
- 陈浩, 张伟. 基于聚类的用户行为模式识别研究[J]. 计算机科学, 2020, 47(S2): 543-547.
- 孙静, 李明. 数据可视化在电商数据分析中的应用探索[J]. 数据分析与知识发现, 2018, 2(10): 23-30.
- 周涛, 王宇. 用户复购行为预测模型研究综述[J]. 管理科学学报, 2021, 24(2): 1-18.
- 赵雷, 李晓. 机器学习在电商推荐系统中的应用[J]. 计算机学报, 2020, 43(7): 1223-1238.
- 钱进, 王丽. 基于Hadoop的电商大数据分析平台设计与实现[J]. 信息系统工程, 2019, (7): 100-104.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~