摘要
本文旨在通过大数据分析与挖掘技术,对淘宝平台上的商品数据进行全面而深入的研究。利用大数据处理技术,如数据清洗、数据集成与转换、数据存储等,对海量商品信息进行高效处理,以揭示商品销售趋势、用户购买行为模式、以及市场细分等关键信息。通过构建商品推荐系统、销售预测模型及用户画像分析,本文不仅为淘宝商家提供了精准的市场营销策略建议,还为消费者带来了更加个性化的购物体验。研究结果表明,大数据分析在优化电商平台运营、提升用户满意度及促进销售增长方面具有显著作用。
关键字: 大数据分析、淘宝商品数据、用户行为分析、销售预测、商品推荐系统、用户画像
Abstract
This paper focuses on conducting a comprehensive and in-depth analysis of commodity data on Taobao platform through big data analytics and mining techniques. Leveraging big data processing technologies such as data cleaning, integration, transformation, and storage, we efficiently handle massive commodity information to uncover critical insights into sales trends, consumer purchasing behavior patterns, and market segmentation. By establishing a commodity recommendation system, sales prediction models, and user persona analysis, this paper not only provides Taobao merchants with precise marketing strategy suggestions but also offers consumers a more personalized shopping experience. The research findings demonstrate the significant role of big data analytics in optimizing e-commerce platform operations, enhancing user satisfaction, and promoting sales growth.
Keywords: Big Data Analytics, Taobao Commodity Data, User Behavior Analysis, Sales Forecasting, Commodity Recommendation System, User Persona
目录
- 绪论
- 研究背景与意义
- 国内外研究现状
- 研究内容与方法
- 论文结构安排
- 相关理论基础与技术概述
- 大数据基本概念与特点
- 数据挖掘技术简介
- 数据预处理技术
- 数据分析与建模方法
- 淘宝商品数据收集与预处理
- 数据来源与获取
- 数据清洗与整合
- 数据存储与管理
- 淘宝商品数据分析
- 商品销售趋势分析
- 用户购买行为模式挖掘
- 市场细分与消费者画像构建
- 基于大数据的淘宝商品推荐系统
- 推荐系统概述
- 推荐算法设计与实现
- 推荐效果评估与优化
- 销售预测模型构建
- 预测模型选择
- 模型构建与训练
- 预测结果分析与应用
- 案例分析与实证研究
- 具体案例分析
- 实证研究结果
- 策略建议与改进方向
- 结论与展望
- 研究总结
- 研究贡献与不足
- 未来研究方向
- 参考文献
4. 参考文献(示例,中文论文)
- 李晓明, 张伟. 大数据时代下的电子商务数据分析[J]. 电子商务, 2019(06): 45-47.
- 王玖斑, 陈安静. 基于用户画像的个性化商品推荐系统研究[J]. 计算机工程与应用, 2020, 56(12): 1-7.
- 张晓琳, 李安新. 淘宝平台商品销售预测模型构建与应用[J]. 商业经济研究, 2021(03): 89-92.
- 赵云腾, 钱康云. 数据挖掘技术在电商用户行为分析中的应用[J]. 数据分析与知识发现, 2020, 4(05): 10-18.
- 孙伦棠, 周岜谦. 基于大数据的电商市场细分与用户画像研究[J]. 管理现代化, 2019, 39(05): 96-100.
- 陈曦涵, 王安士. 深度学习在商品推荐系统中的应用研究[J]. 计算机科学, 2021, 48(01): 23-28.
- 郑佳雨,赖英贤. 电商平台用户购买行为的影响因素分析[J]. 电子商务, 2020(09): 34-36.
- 李育坚,黄静雯 大数据环境下电商企业精准营销策略研究[J]. 营销界, 2021(01): 25-27.
- 陈祯月,杨宛. 基于机器学习的电商销售预测模型优化[J]. 系统工程理论与实践, 2020, 40(08): 2131-2140.
- 赵一蓉,邱萱俐. 用户行为数据在电商平台个性化服务中的应用[J]. 现代情报, 2021, 41(02): 129-136.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~