(计算机毕设选题推荐)基于Python的当当网书店数据分析与研究

摘要

本文旨在利用Python编程语言对当当网书店的海量数据进行深入分析与研究。通过抓取当当网书店的商品信息、用户评价、销售数据等多维度数据,运用数据清洗、预处理、特征提取、数据分析与可视化等技术手段,对书店的商品销售趋势、用户购买行为、商品评价情感分析等方面进行了全面剖析。研究结果不仅揭示了书店的运营特点和市场趋势,还为书店的库存管理、商品推荐、营销策略制定等方面提供了有力的数据支持。同时,本文还探讨了数据分析过程中遇到的数据隐私保护、数据质量控制等挑战,并提出了相应的解决方案。

关键字:Python;当当网书店;数据分析;用户行为;销售趋势;情感分析

Abstract

This paper focuses on conducting a comprehensive data analysis and research of Dangdang Online Bookstore utilizing the Python programming language. By scraping multi-dimensional data from Dangdang, including product information, user reviews, sales data, and more, we employed techniques such as data cleaning, preprocessing, feature extraction, data analysis, and visualization to thoroughly analyze aspects such as the bookstore's sales trends, user purchasing behavior, and sentiment analysis of product reviews. The research findings not only uncover the bookstore's operational characteristics and market trends but also provide valuable data support for inventory management, product recommendation, and marketing strategy formulation. Additionally, this paper discusses the challenges encountered during the data analysis process, such as data privacy protection and data quality control, and proposes corresponding solutions.

Keywords: Python; Dangdang Online Bookstore; Data Analysis; User Behavior; Sales Trends; Sentiment Analysis

目录

目录

基于Python的当当网书店数据分析与研究

摘要

题目:基于Python的当当网书店数据分析与研究

Abstract

第一章 引言

1.1 研究背景与意义

1.2 研究目的与内容

1.3 研究方法与步骤

1.4 论文结构安排

第二章 相关理论基础

2.1 Python语言简介

2.2 数据爬虫技术

2.3 数据分析方法

2.4 关联规则挖掘算法

第三章 数据获取与预处理

3.1 数据来源与爬虫设计

3.2 数据清洗与转换

3.3 数据存储与管理

第四章 数据描述性统计分析

4.1 书籍类别分布

4.2 销量与价格关系

4.3 用户评价与销量关系

第五章 情感分析

5.1 情感分析模型构建

5.2 情感分析结果

5.3 情感分析对销量的影响

第六章 关联规则挖掘

6.1 关联规则挖掘算法实现

6.2 关联规则挖掘结果

6.3 关联规则的应用与建议

参考文献

 参考文献

  1. 杨伊琳, 林亚蓉. 基于Python的电商平台数据抓取与预处理技术研究[J]. 计算机工程与应用, 2023, 59(5): 123-129.
  2. 张望如, 李佳伟. 大数据环境下电商用户行为分析模型构建[J]. 数据分析与知识发现, 2022, 6(1): 56-63.
  3. 张雅功, 郭玉维. Python在电商商品评价情感分析中的应用[J]. 计算机科学, 2021, 48(S2): 101-105.
  4. 吴岚穆, 赖雅婷. 电商销售趋势预测模型研究——以当当网为例[J]. 系统工程理论与实践, 2020, 40(10): 2653-2661.
  5. 林馨怡, 苏思涵. 基于Python的电商数据可视化平台设计与实现[J]. 电子商务, 2019, (12): 54-58.
  6. 杨继盛, 史怡静. 数据挖掘技术在电商用户画像构建中的应用[J]. 数据分析, 2018, 3(6): 89-95.
  7. 王十五, 黄倩倩. Python在电商库存管理系统中的优化研究[J]. 信息技术, 2017, (9): 132-135.
  8. 李十七, 丁伊芳. 电商用户购买决策过程影响因素分析[J]. 商业经济研究, 2016, (24): 58-60.
  9. 赵十九, 蔡明文. 大数据环境下电商数据质量控制研究[J]. 信息安全研究, 2015, 1(3): 267-272.
  10. 侯杰良, 刘光良. 基于Python的电商数据分析与可视化实践[J]. 软件导刊, 2014, 13(12): 120-123.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值