摘要
本文旨在探讨基于大数据技术的中药材数据分析与可视化方法。随着中药材市场的不断扩大和数据量的激增,如何高效地处理和挖掘中药材数据,以揭示其内在规律、质量特征及市场趋势,成为当前中医药领域的重要课题。本文首先介绍了中药材大数据的来源、特点及分析需求,随后详细阐述了数据预处理、数据挖掘及可视化分析的关键技术。通过案例分析,本文展示了大数据技术在中药材种植、质量控制、药效评价及市场预测等方面的应用效果。最后,总结了研究的主要发现,并对未来研究方向进行了展望。
关键字:大数据;中药材;数据分析;数据挖掘;可视化;质量控制;市场预测
Abstract
This paper explores the methods of data analysis and visualization for traditional Chinese medicinal materials (TCM) based on big data technology. With the continuous expansion of the TCM market and the surge in data volume, how to efficiently process and mine TCM data to reveal its inherent laws, quality characteristics, and market trends has become an important topic in the field of traditional Chinese medicine. This paper first introduces the sources, characteristics, and analysis requirements of big data in TCM, and then elaborates on the key technologies of data preprocessing, data mining, and visual analysis. Through case studies, this paper demonstrates the application effects of big data technology in TCM cultivation, quality control, pharmacodynamic evaluation, and market forecasting. Finally, the main findings of the research are summarized, and future research directions are prospected.
Keywords: Big Data; Traditional Chinese Medicinal Materials (TCM); Data Analysis; Data Mining; Visualization; Quality Control; Market Forecasting
3. 论文目录
摘要
第一章 引言
- 研究背景与意义
- 研究目的与内容
- 研究方法与技术路线
- 论文结构安排
第二章 中药材大数据概述
- 数据来源与类型
- 数据特点与挑战
- 数据分析需求
第三章 数据预处理技术
- 数据清洗
- 数据集成
- 数据转换与规约
第四章 数据挖掘技术在中药材分析中的应用
- 关联规则挖掘
- 聚类分析
- 分类与预测
- 异常检测
第五章 中药材数据可视化技术
- 可视化原理与工具
- 质量控制可视化
- 药效评价可视化
- 市场趋势可视化
第六章 案例分析
- 案例一:中药材种植环境优化
- 案例二:中药材质量追溯系统
- 案例三:中药材市场趋势预测
第七章 结论与展望
- 研究成果总结
- 研究贡献与不足
- 未来研究方向
参考文献
4. 参考文献(10篇中文论文)
- 陈叔好, 黎姿灵. 基于大数据的中药材种植环境优化研究[J]. 中国中药杂志, 2022, 47(15): 3245-3250.
- 高榕玉, 黄艳鱼. 大数据技术在中药材质量控制中的应用[J]. 中草药, 2021, 52(12): 3123-3128.
- 陈晓, 刘叶洁. 基于数据挖掘的中药材药效评价系统[J]. 数据分析与知识发现, 2020, 4(9): 78-85.
- 梁泽云, 黄晓萍. 中药材市场趋势预测的大数据模型构建[J]. 计算机工程与应用, 2019, 55(18): 246-251.
- 杨亚, 陆志明. 数据可视化在中药材种植管理中的应用[J]. 农业工程学报, 2018, 34(20): 156-162.
- 张茂以, 林婉伊. 大数据背景下中药材产业链的信息整合研究[J]. 情报科学, 2017, 35(7): 34-39.
- 蔡伊云, 林佩羽. 数据挖掘技术在中药材市场波动分析中的应用[J]. 现代情报, 2016, 36(12): 145-150.
- 周英博, 夏亚惠. 基于大数据的中药材种植决策支持系统[J]. 农业网络信息, 2015, (8): 22-26.
- 王采佩, 凌梦琳. 中药材质量追溯系统的设计与实现[J]. 中国中医药信息杂志, 2014, 21(6): 33-36.
- 赵世杰, 周铭. 大数据技术在中药材产业发展中的机遇与挑战[J]. 中国中药资源杂志, 2013, 15(6): 789-792.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~