摘要
本文设计并实现了一个基于大数据技术的美食推荐系统。该系统利用大数据处理框架(如Hadoop、Spark)对海量美食数据进行采集、清洗、存储和分析,以挖掘用户的饮食偏好、美食流行趋势以及餐厅特征等信息。通过协同过滤、基于内容的推荐算法以及深度学习模型(如神经网络、卷积神经网络等),系统能够为用户提供个性化的美食推荐服务。实验结果表明,该系统能够显著提高推荐的准确性和用户满意度,为餐饮业和消费者提供了有效的决策支持。
关键字:大数据,美食推荐系统,协同过滤,基于内容的推荐,深度学习
Abstract
This paper designs and implements a food recommendation system based on big data technology. The system leverages big data processing frameworks (such as Hadoop, Spark) to collect, clean, store, and analyze massive food data, aiming to mine users' dietary preferences, food trends, restaurant characteristics, and other information. By utilizing collaborative filtering, content-based recommendation algorithms, and deep learning models (e.g., neural networks, convolutional neural networks), the system can provide personalized food recommendations to users. Experimental results show that the system can significantly improve the accuracy of recommendations and user satisfaction, providing effective decision support for the catering industry and consumers.
Keywords: Big Data, Food Recommendation System, Collaborative Filtering, Content-based Recommendation, Deep Learning
目录
参考文献
- 彭郁婷,王秀玲. 基于Hadoop的大数据处理平台研究与应用[J]. 计算机科学, 2020, 47(6): 123-129.
- 蒋廷湖,毛展霞. 深度学习在推荐系统中的应用与进展[J]. 软件学报, 2021, 32(2): 345-362.
- 陈淑好,李姿伶. 基于协同过滤的美食推荐系统设计与实现[J]. 信息技术, 2020, (10): 56-61.
- 周孟儒,潘欣臻. 大数据环境下美食推荐算法的比较研究[J]. 数据挖掘, 2021, 11(3): 78-85.
- 梁哲宇,黄晓萍. 深度学习在美食图像识别中的应用[J]. 计算机应用研究, 2020, 37(8): 2345-2349.
- 张茂以,林婉婷. 基于Spark的美食评论情感分析系统[J]. 数据分析与知识发现, 2021, 5(2): 102-110.
- 黄柏仪,周逸佩. 融合地理位置的美食推荐算法研究[J]. 计算机应用, 2020, 40(S2): 11-15.
- 林孟霖,林竹水. 基于用户画像的美食推荐系统构建[J]. 信息系统工程, 2021, (6): 121-124.
- 金佳蓉,韩健毓. 大数据技术在餐饮业的应用探索[J]. 现代商业, 2020, (25): 25-27.
- 陈虹荣,何美玲. 实时大数据处理技术在美食推荐中的应用[J]. 计算机技术与发展, 2021, 31(6): 1-6.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~