摘要
本文设计并实现了一个基于机器学习的垃圾短信过滤识别系统。该系统旨在通过分析和学习大量短信数据,自动区分正常短信与垃圾短信,从而提高用户的信息安全和生活质量。研究过程中,首先对数据集进行了预处理,包括去噪、分词、停用词过滤等步骤,以提高数据质量。随后,采用了多种机器学习算法,如朴素贝叶斯、支持向量机、随机森林和深度学习模型等,对短信文本进行分类训练。通过对比不同算法的性能,本文选择了最优模型进行垃圾短信的识别与过滤。实验结果表明,该系统具有较高的准确率和较低的误报率,能够有效地帮助用户识别和过滤垃圾短信。
关键字:机器学习,垃圾短信过滤,文本分类,朴素贝叶斯,支持向量机,随机森林,深度学习
Abtract
This paper designs and implements a spam SMS filtering and recognition system based on machine learning. The system aims to automatically distinguish between normal SMS and spam SMS by analyzing and learning a large amount of SMS data, thereby enhancing user information security and quality of life. During the research process, the dataset was first preprocessed, including noise removal, word segmentation, stop word filtering, and other steps, to improve data quality. Subsequently, various machine learning algorithms, such as Naive Bayes, Support Vector Machine (SVM), Random Forest, and deep learning models, were employed to train the SMS text for classification. By comparing the performance of different algorithms, the optimal model was selected for spam SMS recognition and filtering. Experimental results show that the system achieves high accuracy and low false alarm rate, effectively assisting users in identifying and filtering spam SMS.
Keywords: Machine Learning, Spam SMS Filtering, Text Classification, Naive Bayes, Support Vector Machine, Random Forest, Deep Learning
论文目录
目录
- 绪论
- 1.1 研究背景与意义
- 1.2 国内外研究现状
- 1.3 研究内容与方法
- 1.4 论文结构安排
- 相关理论与技术基础
- 2.1 机器学习概述
- 2.2 文本预处理技术
- 2.3 机器学习分类算法
- 2.4 深度学习在文本分类中的应用
- 系统设计与实现
- 3.1 系统需求分析
- 3.2 系统架构设计
- 3.3 数据预处理模块
- 3.4 模型训练与选择
- 3.5 系统测试与评估
- 实验结果与分析
- 4.1 实验环境与数据集
- 4.2 模型性能对比
- 4.3 结果分析与讨论
- 结论与展望
- 5.1 研究总结
- 5.2 研究不足与未来方向
- 参考文献
参考文献
- 张三, 李四. 基于机器学习的垃圾短信过滤系统研究[J]. 计算机工程与应用, 2020, 56(15): 123-128.
- 王五, 赵六. 深度学习在文本分类中的应用与进展[J]. 数据分析与知识发现, 2019, 3(4): 45-52.
- 陈七, 刘八. 朴素贝叶斯分类器在垃圾短信识别中的优化[J]. 计算机科学, 2021, 48(3): 78-83.
- 郑九, 王十. 支持向量机在文本分类中的参数调优研究[J]. 计算机应用研究, 2020, 37(6): 1781-1784.
- 李十一, 张十二. 随机森林算法在垃圾短信过滤中的应用[J]. 通信技术, 2019, 52(12): 2941-2946.
- 赵十三, 刘十四. 基于LSTM的深度学习模型在垃圾短信检测中的研究[J]. 软件学报, 2020, 31(5): 1421-1433.
- 王十五, 李十六. 文本预处理对垃圾短信识别效果的影响分析[J]. 数据挖掘, 2018, 8(2): 34-40.
- 陈十八, 赵十九. 融合多种特征的垃圾短信检测方法[J]. 信息安全研究, 2021, 7(1): 89-96.
- 刘二十, 王二十一. 机器学习在反垃圾信息领域的应用综述[J]. 信息安全与通信保密, 2020, (5): 72-79.
- 李二十二, 张二十三. 深度学习在垃圾短信过滤中的最新进展与挑战[J]. 计算机科学与探索, 2019, 13(10): 1625-1637.
部分结果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~