摘要
本文设计并实现了一套基于计算机视觉技术的行人闯红灯识别报警系统。该系统旨在通过实时视频监控,自动识别并分析交通路口,的减少行人行为,当检测到行人闯红灯时,立即触发报警机制,以提醒行人及交通管理者注意,从而增强交通安全意识交通事故的发生。系统采用深度学习模型进行行人检测与跟踪,结合图像处理技术提取行人运动轨迹,并利用规则判断行人是否闯红灯。实验结果表明,该系统具有较高的识别准确率和实时性,能够有效提升交通监管效率。
关键字:行人闯红灯、识别报警系统、计算机视觉、深度学习、行人检测、图像处理、轨迹跟踪、交通安全
Abstract
This paper designs and implements a pedestrian red light running recognition and alarm system based on computer vision technology. The system aims to automatically identify and analyze pedestrian behaviors at traffic intersections through real-time video surveillance. When a pedestrian is detected running a red light, the alarm mechanism is immediately triggered to remind pedestrians and traffic managers, thereby enhancing traffic safety awareness and reducing the occurrence of traffic accidents. The system employs deep learning models for pedestrian detection and tracking, extracts pedestrian motion trajectories through image processing techniques, and utilizes rule-based judgments to determine whether pedestrians are running red lights. Experimental results show that the system achieves high recognition accuracy and real-time performance, effectively improving the efficiency of traffic supervision.
Keywords: Pedestrian Red Light Running, Recognition and Alarm System, Computer Vision, Deep Learning, Pedestrian Detection, Image Processing, Trajectory Tracking, Traffic Safety
目录
- 引言
- 研究背景与意义
- 国内外研究现状
- 研究内容与目标
- 系统总体设计
- 系统需求分析
- 系统架构设计
- 功能模块划分
- 关键技术与方法
- 深度学习在行人检测中的应用
- 图像处理与轨迹跟踪算法
- 闯红灯行为判断规则
- 系统实现
- 软件开发环境与工具
- 深度学习模型训练与部署
- 系统界面与交互设计
- 实时视频处理流程
- 实验与测试
- 实验环境设置
- 数据集介绍与预处理
- 识别准确率与实时性评估
- 误报率与漏报率分析
- 结果分析与讨论
- 实验结果展示
- 性能对比分析
- 存在的问题与改进方向
- 结论与展望
- 研究总结
- 研究成果与创新点
- 实际应用价值
- 未来研究方向
4. 参考文献(中文论文示例)
- 李文彬,何义秀. 基于深度学习的行人检测算法研究[J]. 计算机工程与应用, 2021, 57(12): 183-189.
- 游石如,陈睿佩. 实时视频监控系统中的行人跟踪技术研究[J]. 计算机应用研究, 2020, 37(5): 1457-1461.
- 葛真珍,陈俊茂. 基于YOLOv4的行人闯红灯检测算法[J]. 通信技术, 2020, 53(10): 2533-2538.
- 温杰忠,蔡俊宏. 计算机视觉在智能交通系统中的应用综述[J]. 计算机应用与软件, 2019, 36(9): 1-6.
- 林筱原,陈俊祥. 深度学习在图像识别领域的研究进展[J]. 计算机科学, 2018, 45(S2): 11-17.
- 王心怡,张立伟. 行人轨迹预测与行为分析技术综述[J]. 计算机技术与发展, 2018, 28(1): 9-15.
- 黄子平,杨佳儒. 基于OpenCV的实时视频行人检测与跟踪系统[J]. 计算机应用, 2017, 37(S2): 162-166.
- 许肇韦,黎乃文. 深度学习框架下的图像处理技术研究进展[J]. 自动化学报, 2017, 43(6): 921-934.
- 陈淑琴,彭柏钧. 智能交通系统中的行人闯红灯识别算法[J]. 交通运输系统工程与信息, 2016, 16(6): 45-51.
- 洪敬仁,王佳蓉. 深度学习在视频监控领域的应用与挑战[J]. 中国图象图形学报, 2016, 21(11): 1433-1442.
部分成果展示
联系我们
如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~