图论知识点合集

本文主要内容来自acwing,增加了一些我的个人理解。(不包含dfs、bfs和最小生成树算法)

一、存储方式:

1.邻接表:

需注意,如果是无向图,需要正反使用两次add函数,且注意边数是否超标

/*
对于每个点k,开一个单链表,存储k所有可以走到的点;
此处使用数组模拟链表的方式,每次插入都在表头进行。
h[k]存储节点k对应单链表的头节点(位置);
e[N]存储数据;
ne[N]表示next指针;
idx是一个计数器,表示当前总共用过了多少个节点,只会单调递增,用于添加边。
*/
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b) {
	/*
	模拟链表的存储方式:
	首先新建一个节点并存储数据,然后将这个节点接在头节点下:
	先将这个节点的ne指向头节点的ne,然后将头节点的ne指向这个节点
	idx++为下一次新建节点做准备
	*/
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

// 初始化
void init() {
	idx = 0;
	memset(h, -1, sizeof h);//用-1表示空指针
}

2.邻接矩阵(略)

 二、最短路算法:

1.朴素dijkstra算法:

时间复杂度O(n^2+m),适合少节点的稠密图,不适合用于存在负数权值的图。

从某一个节点出发,开始循环:每一次循环找到一个能到达的、未被连接的、到达路径最短的节点,并将其标记为已连接,再从这个节点出发遍历其所有相邻的节点,如果新到达的节点能获得比之前更短的路径,就更新到它的当前最短路径。

有多少个节点循环多少次,即可找到起始点到达所有节点的最短路径。

int g[N][N];  // 存储每条边,也可以用邻接表,但是此题中邻接矩阵更简单
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定
int n;  // 节点数

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i++)
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j++)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j++)
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

 2.堆优化dijkstra算法:

时间复杂度O(mlogn),可用于多节点的稀疏图(少结点稠密图也可)。

相对于朴素dijkstra算法,优化了每次循环中找最短路节点的过程:使用小顶堆(代码中使用了优先队列,本质上与小顶堆相同)进行节点距离存储,从而可以快速地找到最短路节点。

#include<queue>
typedef pair<int, int> PII;
const int N = 100010;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    /*
    优先队列,与队列相似,但是使用了堆排序的方式对数据进行了排序,
    定义方式:priority_queue<数据类型, 数据存储方式(一般用vector)<数据类型>, 升序或降序<数据类型>>
    */
    priority_queue<PII, vector<PII>, greater<PII>> heap;

    heap.push({ 0, 1 });      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({ dist[j], j });
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

 3.Bellman-Ford算法:

时间复杂度 O(nm)

可以用来解决限制路径长度的有负环问题:
限制路径长度为多少就循环多少次(不限制长度就有多少点循环多少次);
每次循环遍历所有边,因此可以用最简单的方法(结构体或类)存储边,如果这条边可以使得它指向的点路径变短,就刷新对应点的路径长度。
实例:对于一条a指向b的权重为w的边,遍历到此条边的时候执行dist[b]=min(diat[b],dist[a]+w)

需要特别注意:当解决限制路径长度的问题时,为了避免串联(单次遍历所有边的过程中,先遍历的边对后遍历的边产生影响,从而导致超出路径长度限制),可以使用备份dist的方式:每次遍历所有边之前,将当前的dist备份至另一数组back中,然后接下来的所有对dist[a]的操作全部改为对back[a]的操作。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}
edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;


    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

4.spfa 算法:

时间复杂度:平均情况下 O(m),最坏情况下 O(nm)

是优化后的Bellman-Ford算法:对于Bellman-Ford算法,dist[b] = dist[a] + w;语句有意义的前提是上一次遍历中dist[a]发生了改变(dist[a]不发生改变则dist[b]不可能发生改变),因此,只需要考虑那些前置节点发生了路径长度改变的节点:

使用宽搜思路实现:首先将一号节点存入队列,接下来进行循环(直到队列为空):从队列中取出一个节点,遍历此节点所有的后继节点,如果能使得到达某一个后继节点的最短距离减小,就将此后继节点存至队列中。

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

5.floyd算法:

时间复杂度是 O(n^3)

作用是求多源汇最短路,使用邻接矩阵进行存储,循环开始前邻接矩阵表示各个点之间的边长,结束后表示各个点之间的最短路径长度。

// 初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

三、最小生成树算法(略)

四、判断二分图:

在一张图中,如果能够把全部的点分到 两个集合 中,保证两个集合内部没有 任何边 ,图中的边 只存在于两个集合之间,这张图就是二分图

1.染色法:使用dfs(推荐)或bfs对所有的点进行染色(要考虑非连通图的情况),一个点与其所有相邻的点必是不同颜色,如果发生冲突则可说明不是二分图。

2.匈牙利算法:

时间复杂度是 O(nm)

作用是求二分图的最大匹配(将二分图的节点分为左右两边,有性质可知所有的边都连接了左边的点和右边的点,选择其中一些边(匹配),使得所有节点最多只有一条边与之连接,此即为最最大匹配)。

思路:每次选择左边中的一个点n1(右边也可),访问可与其相连(有边)的第一个右边的点r1,如果这个点未被其他左边的点(记为n2)相连,直接连接,否则进行回溯:看n2是否可以连接其他未被相连的点(如果不行就继续向上回溯,最终还是不行就表示n1连接失败),如果可以,就更改n2(多层回溯就是更改其他的点)的连接,并将n1连接到r1上。

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过(主函数中每次循环需要重新初始化一次,作用是保证主函数每次调用find函数时,第二个集合中的点最多只能被遍历一次)
void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i++){
    memset(st, false, sizeof st);
    if (find(i)) res++;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值