数据结构与算法:不同路径|(动态规划详解)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

 

动态规划解决问题

思路:当看到此题有多少种不同的路径且他用了二维数组的形似,就相当了dp数组,可能用到动态规划的思路。

确定动态规划的五部曲

题目的意思是只能从左往右走。或者从上往下走。

1.确定dp数组的含义这里的dp数字就代表到达每个格子的路径有多少种。

2.确定递推公式:dp[ i ][ j ] = dp[ i ][ j-1 ]+dp[ i-1 ][ j ] 。解释因为每一个格子到达的路径的个数,就等于他正上方的格子路径的个数加上他正左边格式路径的个数。

3.dp数组的初始化:  dp[i][0] = 1  dp[0][j] = 1。 因为第一行和第一列中的每一个格子,到达的路径只能有一条、

4.确定遍历的顺序:这道题很容易顺序思维就是从左到右,从上到下遍历dp数组。

5.遍历dp数组:一般遍历dp数组可以帮助我们验证思路,返回的结果是否正确。一个验证的作用

class Solution {
public:
    int uniquePaths(int m, int n) {
        //定义dp数组
        vector<vector<int>> dp(m,vector<int>(n,0));
        //初始化dp数组
        for(int i = 0;i<n;i++){dp[0][i] = 1;}
        for(int j = 0;j<m;j++){dp[j][0] = 1;}
        for(int i=1;i<m;i++)
        {
            for(int j = 1;j<n;j++)
            {
                //递推公式
                dp[i][j] = dp[i][j-1]+dp[i-1][j];
                //遍历打印
                cout<<"dp["<<i<<"]["<<j<<"]="<<dp[i][j]<<endl;
            }
        }
        return dp[m-1][n-1];
    }
};

 

时间复杂度O(N*M)

空间复杂度O(N*M) 

因为遍历dp数组,以及开辟dp数组所需要的额外空间都是n*m的复杂度。当然此题可以用深搜或者图论来做,图论做超时了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值