一.理论浅述
在学习算法的时候,我们经常遇到了一类路径规划问题,对题目简单归纳,他们大致分为两类:
- 最短路径的规划安排
- 最快路径的规划安排
这里就分享一下我在学习过程中的一些的认识
如图所示:
若要从A到B,显而易见如果我们假设每一段都是一样长,所花时间都一样,我们的选择肯定会是:A-->节点1-->B,这就是所谓的最短路径
对于这种情况,我们的解决办法可以是创造一个顺序查找序列,即一层一层往外查,首先查A起始节点,连有节点1和节点2,判断节点1和节点2是否为终止节点,若有则停止,若无则向外查找,直到查找到终止节点,输出最终查找的次数即为最短路径,类似于队列思想,总是先将需要转移次数更少的状态进行分析处理
而另外一种则是这样的
可以发现路径被加上了通过时间,也就是按照这个题目的 设定,我们要找到从A到B的最快路径即为:A-->节点2-->节点1-->B 这就是所谓的最短时间