浅谈基于数据结构Graph的路径规划

本文探讨了基于数据结构Graph的路径规划问题,包括最短路径和最快路径的规划。介绍了使用BFS和Dijkstra算法解决此类问题,并通过两个实例详细解析了算法的应用,一个是寻找迷宫中最短路线,另一个是在网格中找到数字和最小的路径。最后强调了图在算法和编程思维提升中的重要作用。
摘要由CSDN通过智能技术生成

一.理论浅述

在学习算法的时候,我们经常遇到了一类路径规划问题,对题目简单归纳,他们大致分为两类:

  1. 最短路径的规划安排
  2. 最快路径的规划安排

这里就分享一下我在学习过程中的一些的认识

如图所示:

若要从A到B,显而易见如果我们假设每一段都是一样长,所花时间都一样,我们的选择肯定会是:A-->节点1-->B,这就是所谓的最短路径

对于这种情况,我们的解决办法可以是创造一个顺序查找序列,即一层一层往外查,首先查A起始节点,连有节点1和节点2,判断节点1和节点2是否为终止节点,若有则停止,若无则向外查找,直到查找到终止节点,输出最终查找的次数即为最短路径,类似于队列思想,总是先将需要转移次数更少的状态进行分析处理

而另外一种则是这样的

可以发现路径被加上了通过时间,也就是按照这个题目的 设定,我们要找到从A到B的最快路径即为:A-->节点2-->节点1-->B 这就是所谓的最短时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值