复变函数之幂级数、洛朗级数

复变函数论:四、幂级数

解析函数的研究主要有两个方法:由Weierstrass提出的幂级数方法和由Cauchy提出的积分表示方法。这篇文章中我们将对幂级数作一点简单的介绍,这些方法与数学分析中的思想别无二致,读者可以快速过完本章。

z 0 ∈ C z_0\in \mathbb{C} z0C。我们称形如

∑ n = 0 + ∞ a n ( z − z 0 ) n \sum^{+\infty}_{n=0}a_n(z-z_0)^n n=0+an(zz0)n
的级数为 z 0 z_0 z0 处展开的幂级数,或称对 z − z 0 z-z_0 zz0 展开的幂级数,其中 a n ∈ C a_n\in \mathbb{C} anC。对给定的 z ∈ C z\in\mathbb{C} zC,如果部分和序列 { S k = ∑ n = 0 k a n ( z − z 0 ) n } \{S_k=\sum^{k}_{n=0} a_n(z-z_0)^n\} {Sk=n=0kan(zz0)n} 收敛,则称此幂级数在 z z z 出收敛,记为

S ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n = lim ⁡ k → + ∞ ∑ n = 0 k a n ( z − z 0 ) n S(z)=\sum^{+\infty}_{n=0}a_n(z-z_0)^n=\lim_{k \to +\infty}{\sum^{k}_{n=0}a_n(z-z_0)^n} S(z)=n=0+an(zz0)n=k+limn=0kan(zz0)n
并称 S ( z ) S(z) S(z) 为级数的和;否则称幂级数在 z z z 处发散。

我们称幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum^{+\infty}_{n=0}a_n(z-z_0)^n n=0+an(zz0)n 在区域 ω \omega ω 上一致收敛于函数 f ( z ) f(z) f(z),如果 ∀ ε > 0 , ∃ k > N \forall\varepsilon>0,\exists k>N ε>0,k>N,则 ∀ z ∈ Ω \forall z\in \Omega zΩ,都有

∣ f ( z ) − ∑ n = 0 k a n ( z − z 0 ) n ∣ < ε |f(z)-\sum^{k}_{n=0}a_n(z-z_0)^n|<\varepsilon f(z)n=0kan(zz0)n<ε
与序列极限相同,对幂级数一致收敛的判别我们有下面的Cauchy准则。

1 Cauchy准则

**定理1(Cauchy准则)**幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum^{+\infty}_{n=0}a_n(z-z_0)^n n=0+an(zz0)n Ω \Omega Ω 上一致收敛充要条件是 ∀ ε > 0 , ∃ N \forall \varepsilon > 0, \exists N ε>0,N,只要 k 1 > k 2 > N k_1>k_2>N k1>k2>N,则 ∀ z ∈ Ω \forall z\in \Omega zΩ,都有
∣ ∑ n = k 2 k 1 a n ( z − z 0 ) n ∣ < ε |\sum\limits_{n=k_2}^{k_1}a_n(z-z_0)^n|<\varepsilon n=k2k1an(zz0)n<ε
证明方法与实的幂级数相同,略。

利用Cauchy准则,可得到下面关于一致收敛常用的一个判别准则。

2 控制收敛原理

**定理2:(控制收敛原理)**如果对 n = 0 , 1 , 2 , ⋯ n=0,1,2,\cdots n=0,1,2,存在一系列 M n M_n Mn,使得 ∀ z ∈ Ω \forall z\in \Omega zΩ,有 ∣ a n ( z − z 0 ) n ∣ ≤ M n |a_n(z-z_0)^n|\leq M_n an(zz0)nMn,且 ∑ n = 0 + ∞ M n \sum_{n=0}^{+\infty} M_n n=0+Mn 收敛,则 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n(z-z_0)^n n=0+an(zz0)n Ω \Omega Ω 上一致收敛。

证:如果级数 ∑ n = 0 + ∞ M n \sum_{n=0}^{+\infty} M_n n=0+Mn收敛,则其满足Cauchy准则,于是得幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n Ω \Omega Ω上满足一致收敛的Cauchy准则。证毕。

与实的幂级数相同,关于复的幂级数收敛性质的基本定理是下面的Abel定理。

3 Abel定理

定理3(Abel定理):如果幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n z ′ ≠ z 0 z'\neq z_0 z=z0处收敛,则对于任意 0 < r < ∣ z ′ − z 0 ∣ 0<r<|z'-z_0| 0<r<zz0,幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n在闭圆盘
D ( z 0 , r ) ‾ = { z ∣ ∣ z − z 0 ∣ ≤ r } \overline{D(z_0,r)}=\{z||z-z_0|\leq r\} D(z0,r)={z∣∣zz0r}
上一致收敛。

证:由 ∑ n = 0 + ∞ a n ( z ′ − z 0 ) n \sum_{n=0}^{+\infty} a_n (z'-z_0)^n n=0+an(zz0)n收敛知,当 k → + ∞ k\to +\infty k+时,

∣ a k ( z ′ − z 0 ) k ∣ = ∣ ∑ n = 0 k a n ( z ′ − z 0 ) n − ∑ n = 0 k − 1 a n ( z ′ − z 0 ) n ∣ → 0 |a_k(z'-z_0)^k| = \left|\sum_{n=0}^{k} a_n (z'-z_0)^n - \sum_{n=0}^{k-1} a_n (z'-z_0)^n\right| \to 0 ak(zz0)k= n=0kan(zz0)nn=0k1an(zz0)n 0
从而序列 { a k ( z ′ − z 0 ) k } \{a_k(z'-z_0)^k\} {ak(zz0)k}为有界序列。设 ∣ a k ( z ′ − z 0 ) k ∣ ≤ M , k = 0 , 1 , 2 , ⋯ |a_k(z'-z_0)^k|\leq M, k=0,1,2,\cdots ak(zz0)kM,k=0,1,2,。对 ∀ z ∈ D ( z 0 , r ) ‾ \forall z\in \overline{D(z_0,r)} zD(z0,r),以及 n = 0 , 1 , 2 , ⋯ n=0,1,2,\cdots n=0,1,2,我们有

∣ a n ( z − z 0 ) n ∣ = ∣ a n ( z ′ − z 0 ) n ( z − z 0 ) n ( z ′ − z 0 ) n ∣ ≤ M ( r ∣ z ′ − z 0 ∣ ) n |a_n(z-z_0)^n| = |a_n(z'-z_0)^n \frac{(z-z_0)^n}{(z'-z_0)^n}| \leq M\left(\frac{r}{|z'-z_0|}\right)^n an(zz0)n=an(zz0)n(zz0)n(zz0)nM(zz0r)n
r ∣ z ′ − z 0 ∣ < 1 \frac{r}{|z'-z_0|}<1 zz0r<1

∑ n = 0 + ∞ M ( r ∣ z ′ − z 0 ∣ ) n \sum_{n=0}^{+\infty} M\left(\frac{r}{|z'-z_0|}\right)^n n=0+M(zz0r)n
收敛。由控制收敛原理得幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n D ( z 0 , r ) ‾ \overline{D(z_0,r)} D(z0,r)上一致收敛。证毕。

利用定理3,对给定的幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n,令

R = s u p { ∣ z − z 0 ∣ ∣ ∑ n = 0 + ∞ a n ( z − z 0 ) n 在 z 点收敛 } R={\rm sup}\{|z-z_0||\sum_{n=0}^{+\infty} a_n (z-z_0)^n 在z点收敛\} R=sup{zz0∣∣n=0+an(zz0)nz点收敛}
R ∈ [ 0 , + ∞ ] R\in[0,+\infty] R[0,+]称为幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n的收敛半径。由Abel定理知,对于任意 r ∈ ( 0 , R ) r\in(0,R) r(0,R),幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n D ( z 0 , r ) ‾ \overline{D(z_0,r)} D(z0,r)上一致收敛,而当 z ∉ D ( z 0 , r ) ‾ z\notin \overline{D(z_0,r)} z/D(z0,r)时,幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n发散。在边界

∂ D ( z 0 , R ) = { z ∣ ∣ z − z 0 ∣ = R } \partial D(z_0,R)=\{z||z-z_0|=R\} D(z0,R)={z∣∣zz0=R}
上,幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n在有些点处可能收敛,在有些点处可能发散。

例2:幂级数 ∑ n = 0 + ∞ n ! z n \sum_{n=0}^{+\infty} n! z^n n=0+n!zn的收敛半径为零;幂级数 ∑ n = 0 + ∞ z n n \sum_{n=0}^{+\infty} \frac{z^n}{n} n=0+nzn的收敛半径为1;其在 z = 1 z=1 z=1处发散,在 z = − 1 z=-1 z=1处收敛;幂级数 ∑ n = 0 + ∞ z n n ! \sum_{n=0}^{+\infty} \frac{z^n}{n!} n=0+n!zn的收敛半径为 + ∞ +\infty +

对于给定的幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n,其收敛半径 R R R可通过其系数利用下面的公式求得:

引理:对给定的 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_n (z-z_0)^n n=0+an(zz0)n,设
L = lim ⁡ n → + ∞ ‾ ∣ a n ∣ n L=\overline{\lim_{n \to +\infty} }\sqrt[n]{|a_n|} L=n+limnan
L L L为序列 { ∣ a n ∣ n } \{\sqrt[n]{|a_n|}\} {nan }的上极限,则

(1)当 L = 0 L=0 L=0时,幂级数的收敛半径 R = + ∞ R=+\infty R=+

(2)当 L = + ∞ L=+\infty L=+时,幂级数的收敛半径 R = 0 R=0 R=0

(3)当 0 < L < ∞ 0<L<\infty 0<L<时,幂级数的收敛半径 R = 1 L R=\frac{1}{L} R=L1

证:我们给出(3)的证明,(1)(2)是类似可以得到的。

∣ z − z 0 ∣ < 1 l i m ‾ ⁡ n → + ∞ ∣ a n ∣ n \left|z-z_{0}\right|<\frac{1}{\varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}} zz0<limn+nan 1,即

l i m ‾ ⁡ n → + ∞ ∣ a n ∣ ∣ z − z 0 ∣ n n < 1 \varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|\left|z-z_{0}\right|^{n}}<1 n+limnanzz0n <1
p p p使得 l i m ‾ ⁡ n → + ∞ ∣ a n ∣ ∣ z − z 0 ∣ n n < p < 1 \varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|\left|z-z_{0}\right|^{n}}<p<1 limn+nanzz0n <p<1,则由上极限的定义知,存在 N N N,使得只要 n > N n>N n>N,就有 ∣ a n ( z − z 0 ) n ∣ < p n \left|a_{n}\left(z-z_{0}\right)^{n}\right|<p^{n} an(zz0)n<pn而级数 ∑ n = 0 + ∞ p n \sum_{n=0}^{+\infty} p^{n} n=0+pn收敛,得幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n收敛。因此

R ⩾ 1 l i m ‾ ⁡ n → + ∞ ∣ a n ∣ n = 1 L R \geqslant \frac{1}{\varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}}=\frac{1}{L} Rlimn+nan 1=L1
但如果 ∣ z − z 0 ∣ > 1 l i m ‾ ⁡ n → + ∞ ∣ a n ∣ n \left|z-z_{0}\right|>\frac{1}{\varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}} zz0>limn+nan 1,即

l i m ‾ ⁡ n → + ∞ ∣ a n ∣ ∣ z − z 0 ∣ n n > 1 \varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|\left|z-z_{0}\right|^{n}}>1 n+limnanzz0n >1
则由上极限的定义知,存在序列 { a n ( z − z 0 ) n } \left\{a_{n}\left(z-z_{0}\right)^{n}\right\} {an(zz0)n}的子序列 { a n k ( z − z 0 ) n k } \left\{a_{n_{k}}\left(z-z_{0}\right)^{n_{k}}\right\} {ank(zz0)nk},使得 lim ⁡ n k → + ∞ a n k ( z − z 0 ) n k = ∞ \lim _{n_{k} \rightarrow+\infty} a_{n_{k}}\left(z-z_{0}\right)^{n_{k}}=\infty limnk+ank(zz0)nk=。于是 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n发散。因此

R ⩽ 1 l i m ‾ ⁡ n → + ∞ ∣ a n ∣ n = 1 L R \leqslant \frac{1}{\varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}}=\frac{1}{L} Rlimn+nan 1=L1
引理得证。

利用这一引理,我们可以得到:

4 收敛半径

定理4: 幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n ∑ n = 0 + ∞ n a n ( z − z 0 ) n − 1 \sum_{n=0}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1} n=0+nan(zz0)n1有相同的收敛 半径。

证明: 由 lim ⁡ n → + ∞ n n = 1 \lim _{n \rightarrow+\infty} \sqrt[n]{n}=1 limn+nn =1

l i m ‾ ⁡ n → + ∞ ∣ a n ∣ n = l i m ‾ ⁡ n → + ∞ n ∣ a n ∣ n \varlimsup_{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}=\varlimsup_{n \rightarrow+\infty} \sqrt[n]{n\left|a_{n}\right|} n+limnan =n+limnnan
所以由引理知定理得证。

有了上面的准备,本节我们要证明的基本定理是

定理5 设幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n的收敛半径为 R > 0 R>0 R>0
f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} f(z)=n=0+an(zz0)n
D ( z 0 , R ) = { z ∣ ∣ z − z 0 ∣ < R } D\left(z_{0}, R\right)=\left\{z|| z-z_{0} \mid<R\right\} D(z0,R)={z∣∣zz0∣<R}内解析,并且

f ′ ( z ) = ∑ n = 1 + ∞ n a n ( z − z 0 ) n − 1 f^{\prime}(z)=\sum_{n=1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1} f(z)=n=1+nan(zz0)n1
证明:

∀ z ′ ∈ D ( z 0 , R ) , \forall z^{\prime} \in D\left(z_{0}, R\right), zD(z0,R) r > 0 ,使 ∣ z ′ − z 0 ∣ < r < R r>0\text{,使}\left|z^{\prime}-z_{0}\right|<r<R r>0,使zz0<r<R,则在 D ( z 0 , r ) ‾ \overline{D\left(z_{0}, r\right)} D(z0,r)上幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n ∑ n = 1 + ∞ n a n ( z − z 0 ) n − 1 \sum_{n=1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1} n=1+nan(zz0)n1都是一致收敛的。我们仅需要在 D ( z 0 , r ) D\left(z_{0}, r\right) D(z0,r)上讨论 f ( z ) f(z) f(z) z ′ z^{\prime} z的可导性。

对任意 k = 1 , 2 , ⋯ k=1,2, \cdots k=1,2,,令 S k ( z ) = ∑ n = 0 k a n ( z − z 0 ) n , S_{k}(z)=\sum_{n=0}^{k} a_{n}\left(z-z_{0}\right)^{n}, Sk(z)=n=0kan(zz0)n

S k ′ ( z ′ ) = ∑ n = 1 k n a n ( z ′ − z 0 ) n − 1 S_{k}^{\prime}\left(z^{\prime}\right)=\sum_{n=1}^{k} n a_{n}\left(z^{\prime}-z_{0}\right)^{n-1} Sk(z)=n=1knan(zz0)n1

∣ f ( z ) − f ( z ′ ) z − z ′ − ∑ n = 1 + ∞ n a n ( z ′ − z 0 ) n − 1 ∣ ⩽ ∣ S k ( z ) − S k ( z ′ ) z − z ′ − S k ′ ( z ′ ) ∣ + ∣ ∑ n = k + 1 + ∞ n a n ( z ′ − z 0 ) n − 1 ∣ + ∣ ∑ n = k + 1 + ∞ a n [ ( z − z 0 ) n − ( z ′ − z 0 ) n z − z ′ ] ∣ \left|\frac{f(z)-f\left(z^{\prime}\right)}{z-z^{\prime}}-\sum_{n=1}^{+\infty} n a_{n}\left(z^{\prime}-z_{0}\right)^{n-1}\right| \\\leqslant\left|\frac{S_{k}(z)-S_{k}\left(z^{\prime}\right)}{z-z^{\prime}}-S_{k}^{\prime}\left(z^{\prime}\right)\right|+\left|\sum_{n=k+1}^{+\infty} n a_{n}\left(z^{\prime}-z_{0}\right)^{n-1}\right|+\left|\sum_{n=k+1}^{+\infty} a_{n}\left[\frac{\left(z-z_{0}\right)^{n}-\left(z^{\prime}-z_{0}\right)^{n}}{z-z^{\prime}}\right]\right| zzf(z)f(z)n=1+nan(zz0)n1 zzSk(z)Sk(z)Sk(z) + n=k+1+nan(zz0)n1 + n=k+1+an[zz(zz0)n(zz0)n]
由于

∣ ( z − z 0 ) n − ( z ′ − z 0 ) n z − z ′ ∣ = ∣ ∑ i = 1 n ( z − z 0 ) n − i ( z ′ − z 0 ) i − 1 ∣ ⩽ ∑ i = 1 n ∣ ( z − z 0 ) n − i ∣ ∣ ( z ′ − z 0 ) i − 1 ∣ ⩽ n r n − 1 ∣ ∑ n = k + 1 + ∞ n a n ( z − z 0 ) n − 1 ∣ ⩽ ∑ n = k + 1 + ∞ n ∣ a n ∣ r n − 1 \left|\frac{\left(z-z_{0}\right)^{n}-\left(z^{\prime}-z_{0}\right)^{n}}{z-z^{\prime}}\right|=\left|\sum_{i=1}^{n}\left(z-z_{0}\right)^{n-i}\left(z^{\prime}-z_{0}\right)^{i-1}\right| \\\leqslant \sum_{i=1}^{n}\left|\left(z-z_{0}\right)^{n-i}\right|\left|\left(z^{\prime}-z_{0}\right)^{i-1}\right| \leqslant n r^{n-1}\left|\sum_{n=k+1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1}\right| \leqslant \sum_{n=k+1}^{+\infty} n\left|a_{n}\right| r^{n-1} zz(zz0)n(zz0)n = i=1n(zz0)ni(zz0)i1 i=1n (zz0)ni (zz0)i1 nrn1 n=k+1+nan(zz0)n1 n=k+1+nanrn1
现已知 ∑ n = 1 + ∞ n ∣ a n ∣ r n − 1 \sum_{n=1}^{+\infty} n\left|a_{n}\right| r^{n-1} n=1+nanrn1收敛,因此 ∀ ε > 0 \forall \varepsilon>0 ε>0,可取 k 0 k_{0} k0,使

∑ n = k 0 + ∞ n ∣ a n ∣ r n − 1 < ε 3 \sum_{n=k_{0}}^{+\infty} n\left|a_{n}\right| r^{n-1}<\frac{\varepsilon}{3} n=k0+nanrn1<3ε
k = k 0 k=k_{0} k=k0,由

lim ⁡ z → z ′ ∣ S k 0 ( z ) − S k 0 ( z ′ ) z − z ′ − S k 0 ′ ( z ′ ) ∣ = 0 \lim _{z \rightarrow z^{\prime}}\left|\frac{S_{k_{0}}(z)-S_{k_{0}}\left(z^{\prime}\right)}{z-z^{\prime}}-S_{k_{0}}^{\prime}\left(z^{\prime}\right)\right|=0 zzlim zzSk0(z)Sk0(z)Sk0(z) =0
知,存在 δ > 0 \delta>0 δ>0,使 ∣ z − z ′ ∣ < δ |z-z^{\prime}|<\delta zz<δ时,

∣ S k ( z ) − S k ( z ′ ) z − z ′ − S k ′ ( z ′ ) ∣ < ε 3 \left|\frac{S_{k}(z)-S_{k}\left(z^{\prime}\right)}{z-z^{\prime}}-S_{k}^{\prime}\left(z^{\prime}\right)\right|<\frac{\varepsilon}{3} zzSk(z)Sk(z)Sk(z) <3ε
因此 ∣ z − z ′ ∣ < δ |z-z^{\prime}|<\delta zz<δ时,

∣ f ( z ) − f ( z ′ ) z − z ′ − ∑ n = 0 + ∞ n a n ( z ′ − z 0 ) n − 1 ∣ < ε \left|\frac{f(z)-f\left(z^{\prime}\right)}{z-z^{\prime}}-\sum_{n=0}^{+\infty} n a_{n}\left(z^{\prime}-z_{0}\right)^{n-1}\right|<\varepsilon zzf(z)f(z)n=0+nan(zz0)n1 <ε
这样我们就证明了 f ( z ) f(z) f(z) z ′ z^{\prime} z可导,且 f ′ ( z ′ ) = ∑ n = 1 + ∞ n a n ( z ′ − z 0 ) n − 1 f^{\prime}\left(z^{\prime}\right)=\sum_{n=1}^{+\infty} n a_{n}\left(z^{\prime}-z_{0}\right)^{n-1} f(z)=n=1+nan(zz0)n1,证毕。

5 幂级数求导

**推论1:**设幂级数 f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} f(z)=n=0+an(zz0)n的收敛半径 R > 0 R>0 R>0,则 f ( z ) f(z) f(z) D ( z 0 , R ) D\left(z_{0}, R\right) D(z0,R)上任意阶可导,并且有 a n = f ( n ) ( z 0 ) n ! a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} an=n!f(n)(z0),即
f ( z ) = ∑ n = 0 + ∞ f ( n ) ( z 0 ) n ! ( z − z 0 ) n f(z)=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} f(z)=n=0+n!f(n)(z0)(zz0)n
推论1表明,幂级数就是其和函数 f ( z ) f(z) f(z) z 0 z_{0} z0处的Taylor展开式。

推论2:如果 f ( z ) f(z) f(z)可在 z 0 z_{0} z0的邻域内可展开为 ( z − z 0 ) (z-z_{0}) (zz0)的幂级数,则其展开式是唯一的。

事实上定理5的逆定理亦成立,即如果 f ( z ) f(z) f(z)是圆盘 D ( z 0 , R ) D\left(z_{0}, R\right) D(z0,R)上的解析函数,则 f ( z ) f(z) f(z)可在 D ( z 0 , R ) D\left(z_{0}, R\right) D(z0,R)上展开为幂级数 f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} f(z)=n=0+an(zz0)n。因此对于圆盘 D ( z 0 , R ) D\left(z_{0}, R\right) D(z0,R)这样的区域,关于 ( z − z 0 ) (z-z_{0}) (zz0)收敛的幂级数与其上解析函数之间一一对应。

解析函数的性质可通过幂级数的研究得到,同样幂级数的性质也可通过解析函数来反映。例如我们前面证明了解析函数经 + + +, − - , × \times ×, ÷ (分母不为零)和复合后仍是解析函数,因而同样的幂级数在相应收敛区域内也可作 + + +, − - , × \times ×, ÷ (分母不为零)和复合的运算。下面对这些运算作一些简单介绍。

幂级数的乘法:设给定两个在 z 0 z_{0} z0点的邻域上收敛的幂级数

f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n = ∑ n = 0 + ∞ f ( n ) ( z 0 ) n ! ( z − z 0 ) n , g ( z ) = ∑ n = 0 + ∞ b n ( z − z 0 ) n = ∑ n = 0 + ∞ g ( n ) ( z 0 ) n ! ( z − z 0 ) n f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}, \\g(z)=\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} f(z)=n=0+an(zz0)n=n=0+n!f(n)(z0)(zz0)n,g(z)=n=0+bn(zz0)n=n=0+n!g(n)(z0)(zz0)n
我们定义其乘积为

f ( z ) g ( z ) = [ ∑ n = 0 + ∞ a n ( z − z 0 ) n ] ⋅ [ ∑ n = 0 + ∞ b n ( z − z 0 ) n ] = ∑ n = 0 + ∞ ( ∑ k = 0 n a k b n − k ) ( z − z 0 ) n = ∑ n = 0 + ∞ ( f g ) ( n ) ( z 0 ) n ! ( z − z 0 ) n f(z)g(z)=\left[\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}\right] \cdot\left[\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}\right] \\=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} \frac{(f g)^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} f(z)g(z)=[n=0+an(zz0)n][n=0+bn(zz0)n]=n=0+(k=0nakbnk)(zz0)n=n=0+n!(fg)(n)(z0)(zz0)n
其也是在 z 0 z_{0} z0点展开的幂级数。

如果 r 1 r_{1} r1, r 2 r_{2} r2分别是幂级数 ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} n=0+an(zz0)n ∑ n = 0 + ∞ b n ( z − z 0 ) n \sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n} n=0+bn(zz0)n的收敛半径,则其乘积

∑ n = 0 + ∞ a n ( z − z 0 ) n ⋅ ∑ n = 0 + ∞ b n ( z − z 0 ) n = ∑ n = 0 + ∞ ( ∑ k = 0 n a k b n − k ) ( z − z 0 ) n \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \cdot \sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n} n=0+an(zz0)nn=0+bn(zz0)n=n=0+(k=0nakbnk)(zz0)n
的收敛半径大于等于 min ⁡ { r 1 , r 2 } \min \left\{r_{1}, r_{2}\right\} min{r1,r2}。这一点利用定理5的逆容易看出,也可利用微积分中关于绝对收敛级数的和与求和顺序无关这一结论直接得到。

例3: f ( z ) = 1 − z f(z)=1-z f(z)=1z, g ( z ) = 1 1 − z = ∑ n = 0 + ∞ z n g(z)=\frac{1}{1-z}=\sum_{n=0}^{+\infty} z^{n} g(z)=1z1=n=0+zn,则其收敛半径分别为 r 1 = + ∞ r_{1}=+\infty r1=+, r 2 = 1 r_{2}=1 r2=1,但 f ( z ) g ( z ) = ( 1 − z ) ( ∑ n = 0 + ∞ z n ) = 1 f(z) g(z)=(1-z)\left(\sum_{n=0}^{+\infty} z^{n}\right)=1 f(z)g(z)=(1z)(n=0+zn)=1的收敛半径为 + ∞ +\infty +,其大于 min ⁡ { r 1 , r 2 } \min \left\{r_{1}, r_{2}\right\} min{r1,r2}

幂级数经相除和幂级数经复合后所得的幂级数一般可通过待定系数法求得。

例4:

f ( z ) = ∑ n = 0 + ∞ ( n + 1 ) 2 z n f(z)=\sum_{n=0}^{+\infty}(n+1)^{2} z^{n} f(z)=n=0+(n+1)2zn, g ( z ) = ∑ n = 0 + ∞ ( − 1 ) n ( n + 1 ) z n g(z)=\sum_{n=0}^{+\infty}(-1)^{n}(n+1) z^{n} g(z)=n=0+(1)n(n+1)zn。假设 f ( z ) g ( z ) = ∑ n = 0 + ∞ b n z n \frac{f(z)}{g(z)}=\sum_{n=0}^{+\infty} b_{n} z^{n} g(z)f(z)=n=0+bnzn,其中 b n b_{n} bn 为待定系数,求 b 0 b_{0} b0, b 1 b_{1} b1, b 2 b_{2} b2

解: ∑ n = 0 + ∞ ( n + 1 ) 2 z n = ( ∑ n = 0 + ∞ b n z n ) [ ∑ n = 0 + ∞ ( − 1 ) n ( n + 1 ) z n ] \sum_{n=0}^{+\infty}(n+1)^{2} z^{n}=\left(\sum_{n=0}^{+\infty} b_{n} z^{n}\right)\left[\sum_{n=0}^{+\infty}(-1)^{n}(n+1) z^{n}\right] n=0+(n+1)2zn=(n=0+bnzn)[n=0+(1)n(n+1)zn],比较对应系数,得 b 0 = 1 b_{0}=1 b0=1, − 2 b 0 + b 1 = 4 -2 b_{0}+b_{1}=4 2b0+b1=4, 3 b 0 − 2 b 1 + b 2 = 9 3 b_{0}-2 b_{1}+b_{2}=9 3b02b1+b2=9,解得

b 0 = 1 b_{0}=1 b0=1, b 1 = 6 b_{1}=6 b1=6, b 2 = 18 b_{2}=18 b2=18

例5: f ( z ) = ∑ n = 0 + ∞ ( n + 1 ) 2 z n f(z)=\sum_{n=0}^{+\infty}(n+1)^{2} z^{n} f(z)=n=0+(n+1)2zn, g ( z ) = ∑ n = 1 + ∞ ( − 1 ) n n z n g(z)=\sum_{n=1}^{+\infty}(-1)^{n} n z^{n} g(z)=n=1+(1)nnzn。假定 f [ g ( z ) ] = ∑ n = 0 + ∞ b n z n f[g(z)]=\sum_{n=0}^{+\infty} b_{n} z^{n} f[g(z)]=n=0+bnzn,求 b 0 b_{0} b0, b 1 b_{1} b1, b 2 b_{2} b2

解:
1 + 4 ( − z + 2 z 2 + ⋯   ) + 9 ( − z + 2 z 2 + ⋯   ) 2 + ⋯ = b 0 + b 1 z + b 2 z 2 ⋯ 1+4\left(-z+2 z^{2}+\cdots\right)+9\left(-z+2 z^{2}+\cdots\right)^{2}+\cdots=b_{0}+b_{1} z+b_{2} z^{2} \cdots 1+4(z+2z2+)+9(z+2z2+)2+=b0+b1z+b2z2
比较对应系数得 b 0 = 1 b_{0}=1 b0=1, b 1 = − 4 b_{1}=-4 b1=4, b 2 = 17 b_{2}=17 b2=17

如果 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上一实值函数,设其可展开为收敛半径为 R R R 的幂级数 f ( x ) = ∑ n = 0 + ∞ a n ( x − x 0 ) n f(x)=\sum_{n=0}^{+\infty} a_{n}\left(x-x_{0}\right)^{n} f(x)=n=0+an(xx0)n。令 f ( z ) = ∑ n = 0 + ∞ a n ( z − x 0 ) n f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-x_{0}\right)^{n} f(z)=n=0+an(zx0)n,则其收敛半径也是 R R R f ( z ) f(z) f(z) f ( x ) f(x) f(x) 对复变量的解析扩展。

利用 sin ⁡ x \sin x sinx, cos ⁡ x \cos x cosx e x \mathrm{e}^{x} ex 的幂级数展开:

sin ⁡ z = ∑ n = 1 + ∞ ( − 1 ) n − 1 z 2 n − 1 ( 2 n − 1 ) ! ; cos ⁡ z = ∑ n = 0 + ∞ ( − 1 ) n − 1 z 2 n ( 2 n ) ! ; e z = ∑ n = 0 + ∞ z n n ! \sin z=\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{z^{2 n-1}}{(2 n-1) !} ; \\\cos z=\sum_{n=0}^{+\infty}(-1)^{n-1} \frac{z^{2 n}}{(2 n) !} ; \\\mathrm{e}^{z}=\sum_{n=0}^{+\infty} \frac{z^{n}}{n !} sinz=n=1+(1)n1(2n1)!z2n1;cosz=n=0+(1)n1(2n)!z2n;ez=n=0+n!zn
由定理5得 sin ⁡ z \sin z sinz, cos ⁡ z \cos z cosz e z \mathrm{e}^{z} ez 都是 C \mathbb{C} C 上的解析函数。

应当说明的是 sin ⁡ x \sin x sinx, cos ⁡ x \cos x cosx e x \mathrm{e}^{x} ex 作为实函数满足的各种恒等关系式都可以表示为 x x x 的幂级数之间相应的恒等关系式,而这些关系式仅涉及 x x x 的代数运算,因而用复变量 z z z 代替 x x x 时其同样成立。例如我们同样有和角公式:

sin ⁡ ( z 1 + z 2 ) = sin ⁡ z 1 cos ⁡ z 2 + sin ⁡ z 2 cos ⁡ z 1 \sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\sin z_{2} \cos z_{1} sin(z1+z2)=sinz1cosz2+sinz2cosz1

同样有

e z 1 + z 2 = e z 1 e z 2 , ( sin ⁡ z ) ′ = cos ⁡ z , ( cos ⁡ z ) ′ = − sin ⁡ z \mathrm{e}^{z_{1}+z_{2}}=\mathrm{e}^{z_{1}} \mathrm{e}^{z_{2}}, \quad(\sin z)^{\prime}=\cos z, \quad(\cos z)^{\prime}=-\sin z ez1+z2=ez1ez2,(sinz)=cosz,(cosz)=sinz

这里就不再一一证明了。

另一方面,由于虚数 i i i 的引进,利用级数直接计算得 Euler 公式: e i z = cos ⁡ z + i sin ⁡ z \mathrm{e}^{\mathrm{i} z}=\cos z+\mathrm{i} \sin z eiz=cosz+isinz

同样我们有

sin ⁡ z = e i z − e − i z 2 i ; cos ⁡ z = e i z + e − i z 2 \sin z=\frac{\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}}{2 \mathrm{i}} ; \quad \cos z=\frac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}{2} sinz=2ieizeiz;cosz=2eiz+eiz

因此如果以 e z \mathrm{e}^{z} ez 作为基本初等函数,则 sin ⁡ z \sin z sinz cos ⁡ z \cos z cosz 都可由 e z \mathrm{e}^{z} ez 得到。同样的关系对于反函数也是成立的。

复变函数论:五洛朗级数

1 解析函数的洛朗(Laurent)展开

解析函数除了在解析点作泰勒展开外,有事还需要在它的奇点附近展开成幂级数,这时就得到了洛朗展开

我们先给出一些定义

1. 洛朗展开的定义

设函数 f ( z ) f(z) f(z) 在以 b b b 为圆心的环形区域 R 1 ≤ ∣ z − b ∣ ≤ R 2 R_1\leq|z-b|\leq R_2 R1zbR2 内单值解析,则对于环域内的任意点 z z z f ( z ) f(z) f(z) 都可以用幂级数展开为

f ( z ) = ∑ − ∞ ∞ a n ( z − b ) n ,   R 1 < ∣ z − b ∣ < R 2 f(z)=\sum_{-\infty}^\infty a_n(z-b)^n,\ R_1<|z-b|<R_2 f(z)=an(zb)n, R1<zb<R2
其中

a n = 1 2 π i ∮ C f ( ζ ) ( ζ − b ) n + 1 d ζ a_n=\frac{1}{2\pi{\rm{i}}}\oint_C\frac{f(\zeta)}{(\zeta-b)^{n+1}}{\rm{d}}\zeta an=2πi1C(ζb)n+1f(ζ)dζ
C C C 是环域内绕内周一周的任意一条闭合曲线

证明: 先使用多连通区域内的柯西积分公式,有

f ( z ) = 1 2 π i ∮ C 2 f ( ζ ) ζ − z d ζ − 1 2 π i ∮ C 1 f ( ζ ) ζ − z d ζ f(z)=\frac{1}{2\pi{\rm{i}}}\oint_{C_2}\frac{f(\zeta)}{\zeta-z}{\rm{d}}\zeta-\frac{1}{2\pi{\rm{i}}}\oint_{C_1}\frac{f(\zeta)}{\zeta-z}{\rm{d}}\zeta f(z)=2πi1C2ζzf(ζ)dζ2πi1C1ζzf(ζ)dζ
对于沿 C 2 C_2 C2 的积分,可以像前面泰勒级数论证的那样展开 1 ζ − z \frac{1}{\zeta-z} ζz1

1 ζ − z = ∑ k = 0 ∞ ( z − z 0 ) k ( ζ − z 0 ) k + 1 \frac{1}{\zeta-z}=\sum_{k=0}^\infty\frac{(z-z_0)^k}{(\zeta-z_0)^{k+1}} ζz1=k=0(ζz0)k+1(zz0)k
对于沿 C 1 C_1 C1 的积分,考虑到 ∣ ζ − z 0 ∣ > ∣ z − z 0 ∣ |\zeta-z_0|>|z-z_0| ζz0>zz0,那么考虑用下面方法展开 1 ζ − z \frac{1}{\zeta-z} ζz1

1 ζ − z = 1 ( ζ − z 0 ) − ( z − z 0 ) = − 1 z − z 0 1 1 − ζ − z 0 z − z 0 = − 1 z − z 0 ∑ l = 0 ∞ ( ζ − z 0 ) l ( z − z 0 ) l = − ∑ l = 0 ∞ ( ζ − z 0 ) l ( z − z 0 ) l + 1 \frac{1}{\zeta-z}=\frac{1}{(\zeta-z_0)-(z-z_0)}=-\frac{1}{z-z_0}\frac{1}{1-\frac{\zeta-z_0}{z-z_0}}=-\frac{1}{z-z_0}\sum_{l=0}^\infty\frac{(\zeta-z_0)^l}{(z-z_0)^l}=-\sum_{l=0}^\infty\frac{(\zeta-z_0)^l}{(z-z_0)^{l+1}} ζz1=(ζz0)(zz0)1=zz011zz0ζz01=zz01l=0(zz0)l(ζz0)l=l=0(zz0)l+1(ζz0)l
首先,让我们回顾一下洛朗展开的定义:

设函数 f ( z ) f(z) f(z) 在以 b b b 为圆心的环形区域 R 1 ≤ ∣ z − b ∣ ≤ R 2 R_1\leq|z-b|\leq R_2 R1zbR2 内单值解析,则对于环域内的任意点 z z z f ( z ) f(z) f(z) 都可以用幂级数展开为:

f ( z ) = ∑ − ∞ ∞ a n ( z − b ) n ,   R 1 < ∣ z − b ∣ < R 2 f(z)=\sum_{-\infty}^\infty a_n(z-b)^n,\ R_1<|z-b|<R_2 f(z)=an(zb)n, R1<zb<R2
其中:

a n = 1 2 π i ∮ C f ( ζ ) ( ζ − b ) n + 1 d ζ a_n=\frac{1}{2\pi{\rm{i}}}\oint_C\frac{f(\zeta)}{(\zeta-b)^{n+1}}{\rm{d}}\zeta an=2πi1C(ζb)n+1f(ζ)dζ
这里的 C C C 是环域内绕内周一周的任意一条闭合曲线。

接下来,我们来修正您提供的内容中的错误并添加$

对于洛朗展开来说,即使是正幂项的系数 a n a_n an 也不等于 f ( n ) ( b ) n ! \frac{f^{(n)}(b)}{n!} n!f(n)(b)

f ( z ) f(z) f(z) 在内圆 ∣ z − b ∣ ≤ R 1 |z-b|\leq R_1 zbR1 内不解析,一般而言其在 C 1 C_1 C1 上有奇点,而 b b b 点可能是奇点也可能是解析点。

如果只有环心 b b b f ( z ) f(z) f(z) 的奇点,那么 R 1 R_1 R1 可以任意小。当 R 1 → 0 R_1\rightarrow 0 R10 时称该洛朗级数为 f ( z ) f(z) f(z) 在孤立奇点 z 0 z_0 z0 的邻域内的洛朗展开式。

洛朗展开也具有唯一性。因此使用不同方法展开得到的双边幂级数也是同一个洛朗级数。

:求函数 exp ⁡ [ z 2 ( t − 1 t ) ] \exp\left[\frac{z}{2}\left(t-\frac{1}{t}\right)\right] exp[2z(tt1)] 0 < ∣ t ∣ < ∞ 0<|t|<\infty 0<t< 的洛朗展开:

考虑:

exp ⁡ [ z t 2 ] = ∑ k = 0 ∞ ( z 2 ) t k k ! ,   ∣ t ∣ < ∞ \exp\left[\frac{zt}{2}\right]=\sum_{k=0}^\infty\left(\frac{z}{2}\right)\frac{t^k}{k!},\ |t|<\infty exp[2zt]=k=0(2z)k!tk, t<

exp ⁡ [ − z 2 t ] = ∑ l = 0 ∞ ( z 2 ) l ( − 1 ) l l ! ( 1 t ) l ,   ∣ t ∣ > 0 \exp\left[-\frac{z}{2t}\right]=\sum_{l=0}^\infty\left(\frac{z}{2}\right)^l\frac{(-1)^l}{l!}\left(\frac{1}{t}\right)^l,\ |t|>0 exp[2tz]=l=0(2z)ll!(1)l(t1)l, t>0

因此:

exp ⁡ [ z 2 ( t − 1 t ) ] = ∑ n = − ∞ ∞ J n ( z ) t n \exp\left[\frac{z}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{\infty}J_n(z)t^n exp[2z(tt1)]=n=Jn(z)tn
其中:

J n ( z ) = { ∑ l = 0 ∞ ( − 1 ) l l ! ( n + l ) ! ( z 2 ) 2 l + n , n = 0 , 1 , 2 , … ∑ l = − n ∞ ( − 1 ) l l ! ( n + l ) ! ( z 2 ) 2 l + n , n = − 1 , − 2 , − 3 , … J_n(z)=\left\{ \begin{array}{ll} \sum_{l=0}^\infty\frac{(-1)^l}{l!(n+l)!}\left(\frac{z}{2}\right)^{2l+n}, & n=0,1,2,\ldots \\ \sum_{l=-n}^\infty\frac{(-1)^l}{l!(n+l)!}\left(\frac{z}{2}\right)^{2l+n}, & n=-1,-2,-3,\ldots \end{array} \right. Jn(z)={l=0l!(n+l)!(1)l(2z)2l+n,l=nl!(n+l)!(1)l(2z)2l+n,n=0,1,2,n=1,2,3,
称为** n n n 阶贝塞尔(Bessel)函数**。

n n n 阶贝塞尔函数还可以用积分定义:

J n ( z ) = 1 2 π ∫ 0 2 π cos ⁡ ( n − z sin ⁡ θ ) d θ J_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\cos(n-z\sin\theta)\mathrm{d}\theta Jn(z)=2π102πcos(nzsinθ)dθ

2 单值函数的孤立奇点

f ( z ) f(z) f(z) 是单值函数或多值函数的一个单值分支, b b b 是它的奇点。若 f ( z ) f(z) f(z) b b b 点的空心邻域内处处可导,则称 b b b f ( z ) f(z) f(z) 的孤立奇点。

举个非孤立奇点的例子: z = 1 / n π z=1/n\pi z=1/ n = ± 1 , ± 2 , ⋯ n=\pm1,\pm2,\cdots n=±1,±2, 是函数 f ( z ) = 1 / sin ⁡ ( 1 / z ) f(z)=1/\sin(1/z) f(z)=1/sin(1/z) 的奇点,而 z = 0 z=0 z=0 是这些奇点的聚点,因此,在 z = 0 z=0 z=0 的任一邻域中,总存在无穷多个奇点,所以 z = 0 z=0 z=0 是非孤立奇点。

z = b z=b z=b 是函数 f ( z ) f(z) f(z) 的孤立奇点,则意味着一定存在环形区域 0 < ∣ z − b ∣ < R 0<|z-b|<R 0<zb<R f ( z ) f(z) f(z) 可以展开为洛朗级数。

注:点集 A A A 的聚点 x 0 x_0 x0 指的是:对任意 ε > 0 \varepsilon>0 ε>0,存在 ε \varepsilon ε邻域 B ε ( x 0 ) B_{\varepsilon}(x_0) Bε(x0),使得 B ε ( x 0 ) ∩ ( A \ { x 0 } ) ≠ ∅ B_{\varepsilon}(x_0)\cap(A\backslash\{x_0\})\ne\emptyset Bε(x0)(A\{x0})=

这样的话,有以下几种奇点:

(1)若洛朗级数不含负幂项,则称 b b b f ( z ) f(z) f(z)可去奇点,如 z = 0 z=0 z=0 就是 sin ⁡ z / z \sin z/z sinz/z 的可去奇点。

(2)级数只有有限个负幂项,则称 b b b f ( z ) f(z) f(z)极点

(3)级数有无穷多个负幂项,则称 b b b f ( z ) f(z) f(z)本性奇点

下面分别讨论这几个奇点。

1.可去奇点

显然,在奇点 z = b z=b z=b 处级数也是收敛的,此时收敛区域是一个圆,如果将 f ( z ) f(z) f(z) 定义为

f ( z ) = { f ( z ) , z ≠ b lim ⁡ z → b f ( z ) , z = b f(z)=\begin{cases}f(z), & z\neq b \\ \lim_{z\rightarrow b}f(z), & z=b\end{cases} f(z)={f(z),limzbf(z),z=bz=b
这样 f ( z ) f(z) f(z) z = b z=b z=b 点也是解析的,这正是可去奇点这一称谓的由来。

2. 极点

函数 f ( z ) f(z) f(z) 在极点的空心邻域内的洛朗展开只有有限个负幂项,则

f ( z ) = a − m ( z − b ) − m + ⋯ = ( z − b ) − m ϕ ( z ) f(z)=a_{-m}(z-b)^{-m}+\cdots=(z-b)^{-m}\phi(z) f(z)=am(zb)m+=(zb)mϕ(z)
其中 ϕ ( z ) \phi(z) ϕ(z) z = b z=b z=b 的邻域内解析,若 a − m ≠ 0 a_{-m}\neq0 am=0,则 b b b 称为 f ( z ) f(z) f(z) m m m 阶极点,显然

lim ⁡ z → b f ( z ) = ∞ \lim_{z\rightarrow b}f(z)=\infty zblimf(z)=
反之,若 b b b f ( z ) f(z) f(z) 的孤立奇点,且 lim ⁡ z → b f ( z ) = ∞ \lim_{z\rightarrow b}f(z)=\infty limzbf(z)=,则 b b b f ( z ) f(z) f(z) 的极点。

此外当 b b b f ( z ) f(z) f(z) m m m 阶极点时,

1 f ( z ) = ( z − b ) m 1 ϕ ( z ) \frac{1}{f(z)}=(z-b)^m\frac{1}{\phi(z)} f(z)1=(zb)mϕ(z)1
又知道 1 / ϕ ( z ) 1/\phi(z) 1/ϕ(z) z = b z=b z=b 点解析,所以 z = b z=b z=b 1 / f ( z ) 1/f(z) 1/f(z) m m m 阶零点。

特别的,一阶极点又称作 单极点

3. 本性奇点

函数在本性奇点领域的洛朗展开具有无穷多个负幂项。

如果 z = b z=b z=b 是函数的本性奇点,则当 z → b z\rightarrow b zb f ( z ) f(z) f(z) 的极限不存在,即当 z z z 以不同方式趋向于 b b b 时, f ( z ) f(z) f(z) 趋向于不同的值。

可以证明,对于本性奇点而言,任意给定一个复数(包括 ∞ \infty ),总存在一个序列 z n → b z_n\rightarrow b znb,使得 f ( z n ) → A f(z_n)\rightarrow A f(zn)A

3 解析延拓

定义:设函数 f 1 ( z ) f_1(z) f1(z) 在区域 g 1 g_1 g1 内解析,函数 f 2 ( z ) f_2(z) f2(z) 在区域 g 2 g_2 g2 内解析。若在区域 g 1 ∩ g 2 g_1\cap g_2 g1g2 内, f 1 ( z ) ≡ f 2 ( z ) f_1(z)\equiv f_2(z) f1(z)f2(z)则称 f 2 ( z ) f_2(z) f2(z) f 1 ( z ) f_1(z) f1(z) g 2 g_2 g2 内的解析延拓,同理称 f 1 ( z ) f_1(z) f1(z) f 2 ( z ) f_2(z) f2(z) 是在 g 1 g_1 g1 内的解析延拓

如我们考察两个幂级数

f 1 ( z ) = ∑ n = 0 ∞ z n = 1 + z + z 2 + ⋯   , ∣ z ∣ < 1 f_1(z)=\sum_{n=0}^\infty z^n=1+z+z^2+\cdots, \quad |z|<1 f1(z)=n=0zn=1+z+z2+,z<1

f 2 ( z ) = ∑ n = 0 ∞ 1 z − i / 2 ( z − 1 2 ) n , ∣ z − i / 2 ∣ < 5 / 2 f_2(z)=\sum_{n=0}^\infty\frac{1}{z-{\rm{i}}/2}\left(z-\frac12\right)^n, \quad |z-{\rm{i}}/2|<\sqrt{5}/2 f2(z)=n=0zi/21(z21)n,zi/2∣<5 /2

可以发现,这两个级数在各自的收敛区域内的和函数都是 1 1 − z \frac{1}{1-z} 1z1

同理,如果我们重复这个步骤,就可以把一个函数的定义不断扩展,乃至扩展到整个 C \mathbb{C} C 平面

但是请务必注意:两个函数在定义域交集内取值相同,定义了一个定义域是二者定义域并集的函数,且在两者的定义域上分别与二者相等,这个过程称作解析延拓。解析延拓是拓展了二者的定义域,因此在对于原来函数的定义域的补集内,解析延拓后的函数并不一定与原函数相等。

如著名的 1 + 2 + ⋯ = − 1 / 12 1+2+\cdots=-1/12 1+2+=1/12 是错误的,但 ζ ( − 1 ) = − 1 / 12 \zeta(-1)=-1/12 ζ(1)=1/12 是对的。这就是因为 ζ ( z ) \zeta(z) ζ(z) ζ \zeta ζ 级数只是在原定义域上相等,而 ζ ( − 1 ) \zeta(-1) ζ(1) 是解析延拓后的结果。

此外,定义在不同区域的两个级数可以互为解析延拓,如

f 1 ( z ) = 1 1 − z − 1 ( 1 − z ) 2 + ⋯ = 1 2 − z , ∣ z − 1 ∣ > 1 f_1(z)=\frac{1}{1-z}-\frac{1}{(1-z)^2}+\cdots=\frac{1}{2-z}, \quad |z-1|>1 f1(z)=1z1(1z)21+=2z1,z1∣>1

f 2 ( z ) = 1 + ( z − 1 ) + ( z − 1 ) 2 + ⋯ = 1 2 − z , ∣ z − 1 ∣ < 1 f_2(z)=1+(z-1)+(z-1)^2+\cdots=\frac{1}{2-z}, \quad |z-1|<1 f2(z)=1+(z1)+(z1)2+=2z1,z1∣<1

无穷级数在不同区域内可以收敛到不同的和函数,这两个和函数尽管在不同区域内的级数表达式相同,却不互为解析延拓。

  • 23
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值