Complexity:(NP-completeness theory)

Complexity • Classification of problems: P, EXP, unsolvable • Problems for which we can’t decide yet • Proving hardness of problems • The class NP • The P vs NP question

元宝:以下是计算复杂性理论中核心概念的中英对照解析,结合了复杂度分类、未解问题及核心理论框架:


​1. 问题分类 / Classification of Problems​


• P类(Polynomial Time)

指在多项式时间内能被确定性图灵机解决的问题(如排序、最短路径)。这类问题的复杂度随输入规模增长可控。
Example: 判断一个数是否为质数(AKS算法属于P类)。

  • ​图灵机 = 最简单的抽象计算机​​,能定义“什么是可计算的”。
  • ​现代计算机是图灵机的物理实现​​,但受限于有限内存。
  • ​复杂度理论(P/NP)基于图灵机的计算能力​​。

• EXP类(Exponential Time)

需指数时间解决的问题(如国际象棋的必胜策略判定)。即使输入规模稍增,计算时间会指数级爆炸。
Example: 广义国际象棋的终局胜负判定是EXPTIME完全问题。

• 不可解问题(Unsolvable Problems)

不存在任何算法能解决的问题(无论时间多长)。例如停机问题(Halting Problem),无法通过程序判断任意程序是否会终止。

  1. H 的含义

    • 在停机问题的定义中,H 代表一个假设存在的通用算法(也称为停机判定器)。它试图解决这样一个任务:给定任意的程序 P 和输入 I,能够判断程序 P 在输入 I 下是否会停机。


​2. 尚未能决定的问题 / Problems for Which We Can’t Decide Yet​
指当前计算复杂性理论中未确定复杂度类别或解法的问题:
• P vs NP问题:最著名的开放问题,若P=NP,则所有NP问题都能高效解决,颠覆密码学等领域;反之则证实某些问题本质复杂。

• NP中间问题:如图同构问题(Graph Isomorphism),尚未证明属于P或NP完全类。

• PH与PSPACE关系:多项式层级(Polynomial Hierarchy)是否坍缩到某一层,仍是未解之谜。


​3. 证明问题的困难性 / Proving Hardness of Problems​
通过归约(Reduction)证明某问题至少与另一已知难题同样困难:
• NP困难(NP-Hard):若所有NP问题可归约到该问题,则其至少与NP中最难问题相当(如旅行商问题的优化版本)。

• NP完全(NP-Complete):既是NP类又是NP困难的问题(如SAT布尔可满足性问题),是NP类的“最难点”。

• 归约技术:例如将3着色问题归约为k着色问题,证明后者复杂度不低于前者。


​4. NP类 / The Class NP​
• 定义:非确定性多项式时间(Nondeterministic Polynomial Time)类,指问题的解可在多项式时间内被验证(未必能高效求解)。例如,给定一个数分解方案,可快速验证其正确性,但分解大数本身极难。

• 核心特性:NP类包含所有P类问题(因P类解可直接验证),但P=NP是否成立未知。


​5. P vs NP问题 / The P vs NP Question​
• 核心:询问“高效验证解”是否等价于“高效找到解”。若P=NP,则所有NP问题存在快速算法;否则,某些问题本质复杂。

• 影响:若P=NP,密码学(如RSA)将崩溃,优化问题可快速解决;反之则确认人类直觉与创造力不可替代。

• 现状:多数学者认为P≠NP,但严格证明仍缺失。该问题是克莱数学研究所悬赏百万美元的七大“千禧年难题”之一。


关键概念关联图

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME  
(严格包含关系尚未完全证明,但普遍推测成立)

听不懂没关系,我们先来了解一些基本概念:


​分步讲解:搜索问题(Search Problems)与NP类​


​1. 搜索问题(Search Problem)的定义​
核心要点:
搜索问题是一种决策问题(Decision Problem),即答案为“是(YES)”或“否(NO)”的问题。

• 关键特性:

• 若答案为“YES”,必须存在一个具体解(Solution),并且可以在多项式时间内验证该解的正确性

• 若答案为“NO”,则不存在这样的解。

示例:
最短路径问题(Shortest Path)

决策问题形式:“图中是否存在从A到B的路径长度≤k?”

搜索问题形式:若答案为“YES”,需给出具体路径,并验证其长度≤k。


​2. 搜索问题的解决方式​
核心方法:通过“搜索”有限可能性空间找到解。
• 可能性空间:问题所有潜在解的集合(如所有可能的路径)

• 高效验证:一旦找到一个候选解,需在多项式时间内确认其正确性

示例:
3着色问题(3-Coloring)

• 输入:一个无向图。

• 问题:“能否用3种颜色对图的顶点着色,使得相邻顶点颜色不同?”

• 若答案为“YES”,给出具体着色方案(证书),并验证相邻顶点颜色是否不同


​4. YES与NO答案的验证差异​
• YES的验证:存在多项式时间的证书(例如具体路径或着色方案)

• NO的验证:无法通过简单的“猜测”证明答案为“NO”

例如:若图中不存在长度≤k的路径,如何高效证明这一点?目前没有通用方法(除非P=NP)。

• 这也是P vs NP问题的核心矛盾:若存在多项式时间算法直接找到解(P=NP),则NO答案也可高效验证,但目前未证明。

问题一:为什么“NO答案没有多项式时间的证明方法”?​

​核心解释​

在NP类问题中,​​答案“NO”无法通过简单猜测和快速验证来证明​​,这与“YES”答案存在本质差异。以下是分步解析:

  1. ​“YES”答案的验证机制​​:

    • 存在一个​​证书(Certificate)​​(例如:具体的最短路径、3着色方案等)。
    • 验证证书的正确性只需​​多项式时间​​(例如:检查路径长度是否≤k)。
  2. ​“NO”答案的验证困境​​:

    • 要证明“不存在解”,需​​穷举所有可能解​​并证明每个解均无效(例如:图中所有路径长度均>k)。
    • 然而,可能的解数量通常是​​指数级​​的(如路径数量随节点数指数增长)。
    • 目前没有已知方法能在多项式时间内高效完成这种穷举验证(除非P=NP)。
  3. ​直观类比​​:

    • 假设你声称“某宝箱中没有宝藏”,若要证明这一点,需检查所有可能的藏宝位置,这需要极大代价。但若只需证明“有宝藏”,只需拿出一个宝藏即可。

 若存在多项式时间算法直接找到解(P=NP),则NO答案也可高效验证,但目前未证明?

  1. “若P = NP,则NO答案可高效验证”的含义及原因

    • 含义 :如果P类问题和NP类问题相等(即P = NP),那么对于所有NP问题,在得到“否”答案的时候,这个答案也可以被高效(在多项式时间内)验证。

    • 原因 :通常,我们更熟悉的是对于NP问题,当答案是“是”时,我们可以高效地验证。例如,对于哈密顿回路问题,如果有解,验证解的正确性很快。但是如果P = NP,那么对于NP问题,即使是“否”答案,也存在一种方法可以高效验证。这是因为如果P = NP,那么所有NP问题都可以在多项式时间内解决,这也就意味着对于“否”答案我们可以构造一个与之对应的证书(类似于解的结构,可以用于验证),并且在多项式时间内验证这个证书是否证明了答案是“否”。例如,对于某个NP完全问题(NP中最难的问题),如果P = NP,那么对于一个没有解的实例,我们可以高效地验证这个无解的状态,可能是通过某种对称性的证明或者其他数学结构来确认没有解,并且这个验证过程可以在多项式时间内完成。


​5. 如何将最短路径问题转化为搜索问题?​
步骤分解:

  1. 定义决策版本:
    输入:图 G,起点 s,终点 t,目标长度 k。

    问题:“是否存在从 s 到 t 的路径,长度≤k?”

  2. 构造搜索过程:
    • 搜索空间:所有可能的路径(可能指数级数量)

    • 验证过程:若找到一条路径,检查其长度是否≤k(多项式时间)

  3. 证书(Certificate):
    • 若答案为“YES”,证书是具体的路径(例如节点序列)。

    • 验证证书只需遍历路径并计算总长度。

  4. NP类特性:
    验证路径长度的时间为 O(m)(m为路径边数),是多项式时间。

    因此(因为验证:是多项式时间),最短路径的决策版本属于NP类问题。

为什么说 “NO答案可高效验证”?

  • 通常情况(当 P!=NP 时):对于 NP 问题,我们通常只能高效验证“是”的答案(即存在一个解时可以快速验证),但无法高效验证“否”的答案(即不存在解时难以快速证明无解)。

  • 若 P=NP 的情况:如果 P=NP,那么对于每个 NP 问题,都存在一个确定性算法可以在多项式时间内解决问题。这意味着:

    • 不仅“是”的答案可以高效验证,而且“否”的答案也可以通过某种构造或证明来高效验证。

    • 例如,对于一个没有解的实例,我们可以找到一种方式(如反证法、数学结构等)来快速证明其无解,而这种证明本身也可以在多项式时间内验证。


这张图是讲解 搜索(判定)问题优化问题 之间的区别和联系。在算法与复杂度理论中,这两类问题经常一起出现,也常常容易混淆,下面我们来逐条解释。


🔵 1. 什么是 Search(Decision)Problem?判定问题

问题的答案是“是 / 否(yes/no)”的类型。

例子:Hamiltonian Cycle Problem

  • 给一个图,是否存在一个“访问每个点恰好一次”的回路?

  • ✅ 答案是 yes 或 no → 判定问题


🔴 2. 什么是 Optimization Problem?优化问题

要求找到最小值 / 最大值的解,而不仅仅是“有没有解”。

例子:旅行商问题(TSP)

  • 给一个带权图,找出访问所有城市恰好一次、且总代价最小的路径。

  • 不是 yes/no,而是找出最优路径优化问题


🔁 3. 优化问题有对应的 Search(判定)版本

比如将优化问题加上一个阈值限制,就变成判定问题。

TSP 的 Search 版:

  • 给定一个图和一个值 W,是否存在一条 Hamiltonian 回路,其权重 ≤ W

  • ✅ 这个是 yes/no 的形式了 → 属于 判定问题


🔄 4. 解决优化问题 ⇒ 可以解决判定问题

如果你能求最优解,那当然可以判断“是否有小于等于某个值的解”。

但反过来呢?

通常我们也能通过 判定问题 + 二分搜索 来逼近最优解。


🟢 5. 为什么复杂度类通常定义在判定问题上?

  • 复杂度理论(比如 NP, NP-complete)都是以“判定问题”为基础建立的。

  • 这是因为:

    • 判定问题的输出格式固定(yes/no),更容易统一分析。

    • 很多优化问题可以转化成判定问题来处理。

所以我们常说“这个问题是 NP-难的”,通常是说它的 判定版本 是 NP-难的。
如果判定版本已经很难了,优化版本通常会更难。


✅ 总结对比表:

分类描述示例
判定问题 (Search)是否存在某种解?Yes / NoHamiltonian Cycle Problem
优化问题找到最小 / 最大的解Traveling Salesman Problem (最短路径)
联系优化问题 ⇒ 判定问题通过加阈值变成判断问题
转换方向判定问题 + 二分 ⇒ 近似优化解常用策略
复杂度定义点基于判定问题构建复杂度类(如 NP)优化问题的难度依赖判定版本的难度

 

 


🟧 第二张图:Unsolvable Problems(不可解问题)

这是比 Intractable 更严重的类别:

根本没有任何算法能解决的问题!


🌟 例子:Halting Problem(停机问题)

问题描述:

给定一个程序 P 和输入 X,问:P(X) 会不会最终停下来(terminate)?


✅ Python 编译器可以解决语法问题(例如 P 合法不合法),但不能决定“P 会不会停机”。

举两个 Python 程序的例子:
  • while True: continue
    

    永远不终止

  • print("Hello World!")
    

    一定终止

但是!有没有通用算法 H(P, X),能对所有程序和输入都判断停不停?

答案:没有。


💥 为什么?

  • 假设有这样的算法 H(P, X)

    • 如果 P(X) 会停机 ➜ H(P, X) = 1

    • 如果 P(X) 会死循环 ➜ H(P, X) = 0

图灵证明了这样的算法不可能存在(通过对角线论证、自指悖论等方式)


✅ 总结对比:

类型定义例子可解性
Intractable可以解,但只能在指数级时间内解决排列问题、子集和问题等✅ 可解,但慢
Unsolvable根本不存在任何算法能解决停机问题、自动程序验证等❌ 不可解

这张幻灯片解释了一个非常重要但常被忽视的思想:程序也可以作为其他程序的输入,这是图灵机和现代计算理论(包括不可判定性)的基础。


🧠 核心概念:程序 = 比特序列

“Programs are sequences of bits.”
—— 程序本质上就是一段 比特序列,因此可以被当作输入数据使用。


🔹 示例说明

  • 举例:程序 P = print("Hello, world!")

    • 在计算机底层,它被编码为一连串的比特(或字节),如:

      P = 0110101110100101011010000101001...
      

🔹 程序可以输入到另一个程序中:

A(X) 表示程序 A 在输入 X 上的运行结果。

  • 既然程序是比特串,那么 X 可以是任意比特串,甚至也是一个程序!

  • 所以我们也可以写:
    A(P) → 表示程序 A 以程序 P 为输入运行。


🟢 “well-defined” 是什么?

如果函数 A(X) 对每一对输入 (A, X) 都有一个明确唯一的输出,那它是 well-defined(良定义) 的。

图中解释了这个定义:

  • 不论程序 A 访问 X 的哪一部分,只要最后结果是确定的(唯一的),那我们说 A(X) 是 well-defined。

  • 如果 X 是程序 P,那我们也可以说 A(P) 是 well-defined。


🧾 为什么这个思想很重要?

这是理解 停机问题(Halting Problem) 的前置知识:

  • 因为你能把“程序本身”作为输入放进另一个程序,就可以构造自指(self-reference)。

  • 这也正是不可判定性、对角线法、悖论构造(如 Cantor 和 Gödel 思想)等的核心。


🧩 举个简单例子帮助理解:

假设你写了个 Python 程序 A:

def A(x):
    return eval(x)

你现在可以这样运行它:

A("1 + 2")         # 输出 3
A("print('hi')")   # 输出 hi
A("def f(): pass") # 返回 None

你甚至可以:

code = "print('hello world')"
A(code)  # 执行另一个程序!

✅ 总结一句话:

程序本质是数据,因此程序可以“吃掉”程序作为输入,这为构造“自指问题”、不可判定问题打下基础。

这两张幻灯片是对停机问题(Halting Problem)不可判定性的核心证明——悖论构造法(self-reference contradiction)的详细展示,非常关键!


🧩 停机问题 Halting Problem 再回顾:

目标:我们想构造一个算法 H(P, X) 判断:
程序 P 在输入 X 上是否会停止。

定义如下:

  • H(P, X) = 1:表示 会停机

  • H(P, X) = 0:表示 会陷入死循环


🧪 假设这种程序 H 存在(先假设能构造出来)

我们还开玩笑说可以“从百度买一个现成的 H”😂
并且它对任何程序 P 和输入 X正确判断是否停机


😈 构造一个“反常识”的程序 A(P)

def A(P):
    if H(P, P) == 1:  # 如果 P(P) 会停机
        while True:   # 那我偏不停,我陷入死循环
            continue
    else:             # 如果 P(P) 会死循环
        return        # 那我偏要停机

这段程序是核心:它对 H 做了“唱反调”的行为。


🔥 问题来了:那 A(A) 是什么行为?

让我们问:程序 A 运行在输入 A 上,即 A(A),会停机吗?

分情况讨论:

  1. 如果 H(A, A) = 1(即 A(A) 会停机)
    → 按照 A 的定义,它会陷入死循环 ➜ 实际不会停!
    矛盾

  2. 如果 H(A, A) = 0(即 A(A) 不停)
    → 按照 A 的定义,它直接 return(终止) ➜ 实际会停!
    又矛盾


❌ 得出结论:H 不可能存在

我们通过构造程序 A,只要你假设 H 存在,马上就能构造出一个“让 H 自己打脸”的程序。

这叫做:

  • 自指悖论(Self-reference paradox)

  • 是图灵证明不可判定问题的经典方法。


✅ 总结一句话:

一旦允许程序把“自己作为输入”,就可能引发逻辑悖论。这正是为什么通用的停机判断程序 H 不可能存在


这张幻灯片是对停机问题不可判定性(Halting Problem Undecidability)的最终总结,利用“悖论式反证法”一锤定音,说明:停机问题无法通过算法通用解决


🔁 回顾定义:

  • H(P, X) = 1 ⟶ 程序 P 在输入 X会停机

  • H(P, X) = 0 ⟶ 程序 P(X) 会死循环


💥 构造自反程序 A(P)

def A(P):
    if H(P, P) == 1:
        while True: pass  # 故意死循环
    else:
        return            # 正常退出

这个程序的目的是:故意唱反调。如果 P(P) 会停,它就偏不停;反之,它就偏要停。


❓ 焦点问题:A(A) 会停机吗?

  • 反设法 来分析这件事。

  • 只看 A(A) 的行为,分两种情况:


🟦 Case 1:A(A) 假设会停(↓)

H(A, A) 应该输出 1(因为 H 判断它会停)
但这会触发 A 去执行死循环(↑)

➡️ 矛盾:说会停,结果却死循环(diverges)


🟦 Case 2:A(A) 假设不会停(↑)

H(A, A) 应该输出 0(因为 H 认为它不会停)
但这会触发 A 去 return(↓)

➡️ 又矛盾:说不会停,结果却停了(converges)


❗ 结论:

无论你假设 A(A) 会不会停,都会产生矛盾。

所以:

Contradiction! → 所以不存在这样的 H 算法!
Halting Problem is undecidable


✅ 总结一句话:

假如存在万能“停机判断器”,我们就能构造出一个“自我打脸”的程序,使得它既要停又不能停,从而逻辑上不成立。


这张图用**嵌套的集合图(Venn Diagram)**形象地展示了计算复杂度理论中的主要问题类别及其关系,解释了:

  • 哪些问题能解?

  • 哪些能在合理时间内解?

  • 哪些根本无法解决?


🧭 图中区域说明:

🔵 P 类(多项式时间内可解的问题)

  • 定义:所有能在多项式时间内解出的问题

  • ✅ 高效、可行

  • 例子

    • sort n numbers:排序问题

    • n x n checkers:棋盘类、博弈类问题(某些有高效算法)


🔷 EXP 类(指数时间内可解)

  • 定义:能在指数时间(如 O(2ⁿ))内解决的问题

  • ⛔ 通常太慢,不实际

  • ✅ 但至少是“能解的

  • 例子

    • count from 1 to n,当 n 以位表示时,这个就是指数规模的问题(因为输入只有 log(n) 位)


🟢 Solvable Problems(可解问题)

  • 包含了所有 PEXP 问题,以及其他非多项式非指数,但仍可解的问题

  • ✅ 存在某种图灵机算法可以得出正确结果,只是可能很慢


⚫ Problems(所有问题)

  • 这个全集包括所有你能提出的问题(有意义的问题)


🔴 外圈上的蓝点:HALTING

  • 举例:停机问题

  • ❌ 不可解!不在任何“Solvable”区域内

  • 说明有的问题根本没有任何算法可以解决(不可判定问题)


📌 总结对比:

区域含义举例能力
P多项式时间内可解排序、查找✅ 高效解决
EXP指数时间可解穷举搜索🟡 理论可解但太慢
Solvable图灵机能解的问题上述所有 + 更多✅ 存在算法
外圈问题(如 Halting)根本不可解停机问题❌ 无解

🔺 红色箭头:表示难度上升(从 P → EXP → 不可解)


✅ 一句话总结:

并非所有问题都有解,有些能高效解(P),有些解得很慢(EXP),但有些根本无从下手(如 Halting Problem)。

背包问题的定义

背包问题是一个经典的组合优化问题,通常描述为:给定一组物品,每个物品有特定的重量和价值,目标是在不超过背包承重限制的前提下,选择物品使得总价值最大化。

背包问题的类型

背包问题有多种变体,主要包括:

  • 0-1 背包问题:每个物品只能选择一次或不选择。
  • 完全背包问题:每个物品可以选择多次。
  • 多重背包问题:每个物品有多个可选数量。
  • 分数背包问题:物品可以分割,选择部分物品。

0-1 背包问题的动态规划解法

0-1 背包问题通常使用动态规划来解决。定义一个二维数组 dp,其中 dp[i][j] 表示前 i 个物品在背包容量为 j 时的最大价值。

def knapsack(weights, values, capacity):
    n = len(weights)
    dp = [[0] * (capacity + 1) for _ in range(n + 1)]

    for i in range(1, n + 1):
        for j in range(1, capacity + 1):
            if weights[i-1] <= j:
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
            else:
                dp[i][j] = dp[i-1][j]

    return dp[n][capacity]

weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
capacity = 5
print(knapsack(weights, values, capacity))  # 输出: 7

完全背包问题的动态规划解法

完全背包问题的解法与0-1背包问题类似,但允许每个物品多次选择。

def complete_knapsack(weights, values, capacity):
    n = len(weights)
    dp = [0] * (capacity + 1)

    for i in range(n):
        for j in range(weights[i], capacity + 1):
            dp[j] = max(dp[j], dp[j - weights[i]] + values[i])

    return dp[capacity]

weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
capacity = 5
print(complete_knapsack(weights, values, capacity))  # 输出: 7

多重背包问题的动态规划解法

多重背包问题中,每个物品有多个可选数量。可以通过将多重背包问题转化为0-1背包问题来解决。

def multiple_knapsack(weights, values, counts, capacity):
    n = len(weights)
    dp = [0] * (capacity + 1)

    for i in range(n):
        for j in range(capacity, weights[i] - 1, -1):
            for k in range(1, counts[i] + 1):
                if j >= k * weights[i]:
                    dp[j] = max(dp[j], dp[j - k * weights[i]] + k * values[i])

    return dp[capacity]

weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
counts = [1, 2, 3, 2]
capacity = 5
print(multiple_knapsack(weights, values, counts, capacity))  # 输出: 7

分数背包问题的贪心算法解法

分数背包问题可以使用贪心算法来解决,优先选择单位重量价值最高的物品。

def fractional_knapsack(weights, values, capacity):
    n = len(weights)
    items = list(zip(weights, values))
    items.sort(key=lambda x: x[1] / x[0], reverse=True)

    total_value = 0
    for weight, value in items:
        if capacity >= weight:
            total_value += value
            capacity -= weight
        else:
            total_value += value * (capacity / weight)
            break

    return total_value

weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
capacity = 5
print(fractional_knapsack(weights, values, capacity))  # 输出: 7.5

总结

背包问题是一个广泛研究的优化问题,不同类型的背包问题有不同的解法。动态规划是解决0-1背包、完全背包和多重背包问题的常用方法,而贪心算法则适用于分数背包问题。。


📌 问题 1:为啥要用 bit 来表示输入大小?

✅ 原因:衡量输入规模的真正标准是输入占了多少位(bit)

🌰 举个例子:

  • 假设你输入的是一个整数 S = 1000000(一百万)

    • 这个数值本身很大

    • 但它只需要约 20 bits 就能在计算机里表达(因为 log⁡2(1000000)≈20\log_2(1000000) \approx 20)


🔺 为什么这重要?

如果你写一个算法,运行时间是 O(S)看上去像是“线性时间”,但要小心:

  • 输入只用了 20 bit 表示

  • 你的算法用了 O(S) = O(1000000)

  • 实际上你用了 指数时间,因为1000000 = 2^{20}

➡️ 你输入了 20 bit,却用了 2202^{20} 步去处理它!

这就不是我们想要的“多项式时间”算法。


📌 问题 2:这和 Problems we can’t decide yet in P 有啥关系?

这就引到了 Knapsack 问题 的核心困境:


📦 背包问题的现状:

我们现在有个动态规划算法,复杂度是:

O(nS)

但要注意:

  • S 是“数值”,而不是“bit 表示长度”

  • 所以,算法并不是严格的多项式时间(是“伪多项式时间 pseudo-polynomial”)


那为什么它算是“we can’t decide yet in P”?

因为我们:

  • 能解这个问题(算法已知)

  • 但我们不知道有没有真正的“P类解法”(真正 bit 多项式时间的)

这类问题就属于:

“目前无法确认是否属于 P 类”
即:“Problems for which we can’t decide yet in P”


✅ 总结(直观点):

问题简单说就是…
为什么用 bit ?因为复杂度是相对“输入长度”,而不是“数值大小”,防止伪装成“快”
和“还不能判断是不是 P”有啥关系?有算法,但运行时间不是 bit 级多项式 → 所以还不能归入 P 类

  1. 0 - 1 背包问题

    • 问题描述 :给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,如何选择物品使得总价值最大,并且每个物品只能选择装或者不装。

    • 时间复杂度分析 :0 - 1 背包问题通常使用动态规划来解决。假设背包容量为 W,物品数量为 n,动态规划的方法时间复杂度为 O(nW)。看起来像是一个多项式时间的算法,因为 n 和 W 通常被认为是输入规模的两个维度。但是,从严格的信息论角度讲,在分析算法的时间复杂度时,需要把输入视为二进制位数。

    • 例如,容量 W 的二进制位数为 log W + 1,那么 W 的大小是指数级别于其二进制位数的。所以当把问题看作输入是以二进制编码输入时,0 - 1 背包问题的时间复杂度实际上是伪多项式时间,而不是真正的多项式时间。因为它依赖于数值 W 的大小,而不是输入的二进制位数,所以 0 - 1 背包问题不是 P 问题。

  1. NP 问题(Nondeterministic Polynomial Time Problem)

    • 是指那些可以在多项式时间内验证一个解是否正确的问题。对于NP问题,我们不一定能在多项式时间内找到一个解,但如果给了一个解,我们可以在多项式时间内验证这个解是否正确。0 - 1 背包问题就属于这一类。给定一个物品的选择方案和背包容量,我们可以在多项式时间内验证这个方案是否满足背包容量限制,以及是否达到给定的价值。

 

🧠 和我们前面学的内容有什么关系?

这些问题都属于:

🔷 Problems for which we can’t decide yet if they are in P

  • ✅ 它们是 判定问题

  • ✅ 它们属于 NP 类(可以在多项式时间内验证答案是否正确)

  • ❌ 但我们 还不知道是否存在多项式时间算法

这就把它们归类到了 P vs NP 的核心问题范围。

❓ 提问:

Is there a poly-time one?

  • 我们不知道!

  • 所以 TSP 是属于**“目前不确定是否属于 P 类”**的问题之一。


📌 下半部分:More NP-like Problems

这些都是在实践中非常重要、但目前还找不到多项式时间解法的经典问题。

🧩 列表中常见的 NP-complete 问题包括:

类别例子
图论相关Clique, Independent Set, Graph Coloring, Vertex Cover
优化与调度Multiprocessor Scheduling, Max-Cut
路径与组合Longest Path, Disjoint Paths
数学问题Subset Sum, Integer Linear Programming
满足问题Constraint Satisfaction


🧠 和我们学的核心概念联系:

这些问题都属于:

✅ 在 NP 类(我们可以验证答案)
❌ 但还未证明有多项式解法
➡️ 所以它们都落入“我们无法决定是否在 P”的类别中

这也正是:

P vs NP 问题的核心


✅ 总结一句话:

TSP 和图中的其他问题都属于目前无法确认是否属于 P类的难题,也是P vs NP 问题的主角群

 

**“问题难度证明(hardness proof)”**的主题,也就是 NP 完全性理论的核心部分。


🔖 上半部分:Roadmap(重点部分加深)

我们前面学的是:

  • P、EXP、Unsolvable(复杂度分类)

  • 哪些问题可能不属于 P(如 TSP、Knapsack、Hamiltonian Cycle)

现在开始关注:

🟥 Proving hardness of problems

想办法“证明一个问题是难的”,特别是“它不可能有多项式解法”(除非发生奇迹,比如 P=NP)


🧠 关键术语:Hardness

算法中的 “hardness” 不是指它现在难写代码,而是:

✅ “我们有强烈证据相信,它无法在多项式时间内解决”。

换句话说:

你想找个 O(n⁵)、O(n¹⁰) 算法?都找不到
—— 不是你太菜,而是问题本身就不属于 P 类


📘 下半部分:General Idea

这是 hardness 理论的哲学出发点,也可以叫“经验法则”:


1. ❌ 你花了很久,还是没能找出多项式算法。

  • 举例:你尝试对 TSP、Hamiltonian Path 写个 O(n^3) 解法,失败。

  • 其实不是你失败,而是大家都失败了


2. ⚠️ 没有通用手段可以“证明 O(n) 不存在”

我们目前不能数学上证明某个问题没有 O(n⁵) 解法(除非能解决 P vs NP)


3. 🌍 所以大家默认“某些问题可能真的没有多项式解”

这个信念背后的依据是:

一大堆问题 F,几十年来,成千上万人都没能找到 P 类算法


🔑 最后一句的核心问题:

那我们该怎么“利用”这种“集体智慧”呢?

这就引出了接下来会学的:

🔄 归约(reduction)

🧩 NP-complete 的定义与证明方法


✅ 总结一句话:

虽然我们不能“绝对证明”一个问题不能多项式求解,但我们可以通过“归约”和“经验”认定它是NP-hard,这是我们目前最强的工具。


我们现在刚好进入计算复杂度理论中最核心、最激动人心的一部分:NP 完全性理论(NP-completeness theory)。下面我会用分层结构+通俗比喻来完整梳理整个学习脉络。


🧭 我们学了什么?目前进展到哪里了?

1. P vs NP 背景起点

我们先区分了两类问题:

类别定义例子是否可验证
P可以在多项式时间内求解的问题排序、图最短路、矩阵乘法
NP给出一个解之后,可以在多项式时间内验证其正确性的问题TSP、Knapsack、3-SAT、图着色

这些 NP 问题我们可以验证答案对不对,但不一定能快速找到答案


2. EXP 与 Unsolvable 的边界感

  • 有些问题能解,但很慢(EXP)

  • 有些问题根本不能解(如 Halting Problem)


3. “我们无法判断它是否属于 P”的问题

  • 我们学了:

    • TSP、Knapsack、Hamiltonian Cycle…

    • 都有指数时间算法

    • 但没有找到多项式解法


❗我们卡住的地方是:

我们发现这些问题“好像都很难”,但又没法证明“到底是不是 P 类外的”

这是学术界几十年来的大难题。


🚨 前人在研究过程中发现了一个惊天发现:

虽然不能证明某个问题不是 P,但可以发现:
一大群 NP 问题彼此之间可以归约!


🔄 举个通俗比喻来说明“归约”的力量:

你不会解“难题 A”,但发现只要你会解“难题 B”,你就能立刻解决 A。

换句话说:

  • 如果 B 有解法,A 就也有解法(你只要会 B,就“顺带”会了 A)

  • 所以你可以说:“A 不会比 B 简单!”


💡 接下来我们要学习的:

🟥 NP-complete 理论

就是研究这样的一类“超级代表性问题”:

🔥 NP-Complete 问题 = NP 中最难的问题

  • 如果你能用多项式时间解决一个 NP-complete 问题

  • 那你就能解决所有 NP 问题!也就是说:P = NP!


🧱 前人一步步发现的:

  1. 第一个 NP-complete 问题是 SAT(布尔可满足性)

  2. 后来大家开始不断把 SAT 归约到别的 NP 问题上

  3. 从而建立了一整套“传染链条”:证明一个 NP-complete 问题,就能证明一堆


🧠 接下来我们要学的内容:

学什么目标
什么是归约(Reduction)学会如何把一个问题“变形”为另一个
什么是 NP-hard / NP-complete搞清楚这两个术语的定义与区别
如何证明一个问题是 NP-complete掌握常见套路(比如归约自 3-SAT)
常见 NP-complete 问题有哪些掌握代表性问题,如 3-SAT、Clique、Vertex Cover、Subset Sum、TSP 等

✅ 最终目标:

🔍 给你一个实际问题,你能判断它是不是 NP-complete
✏️ 如果是,你知道不能指望有高效算法,应该转向:

  • 近似算法

  • 启发式搜索

  • 限定规模处理(固定参数算法)


📦 总结(一句话版本):

我们现在站在计算理论的核心十字路口:
如果我们能解决 NP-complete 问题,我们就解决了 P vs NP!
但目前大家都怀疑,这些问题本质上就是没法快速解决的


也就是:如何建立“NP 完全性理论”的方法论(methodology)?


🔵 上半部分总结:为什么我们需要这个理论?

就像你学一套功夫,发现打不过敌人(找不到多项式算法),你就要怀疑:可能是敌人太强,不是你太弱。

但问题是:

  • ❌ 没有通用办法能“数学上证明”一个问题没有 O(n) 算法

  • ✅ 但我们看到了很多问题都没人解决

  • 所以我们推测:它们可能真的不在 P 类

✅ “前人失败的经验”本身成了一种智慧


🧭 下半部分是关键:如何利用这种“智慧”?

我们进入“归约式难度理论”的正式套路:


🧱 Step-by-step 方法论(用于证明 Q 很难):


✅ Step 1:找一大堆“已知困难的问题” F

这些问题必须满足两个条件:

  1. 没人能找到它们的多项式解法(即使尝试了几十年)

  2. 它们彼此之间可以“归约”来回转换(poly-time 归约)

换句话说:

它们是“成团出现”的,一旦解决了一个,全团都能解!

➡️ 这组 F,就是所谓的 NP-complete 问题集


✅ Step 2:把你关心的问题 Q 归约到 F 中的某个问题 Pᵢ

你要证明:Q 至少不比 Pᵢ 简单,也就是说:

  • 如果你能用多项式时间解决 Q,

  • 那么你也可以顺带解决 Pᵢ(因为 Pᵢ ≤ₚ Q)


✅ 一旦做到了:

你就可以得出结论:

❗“Q 属于 NP-complete”的怀疑就合理了
❌ 所以不用再期待找多项式算法(unless P=NP)


💡 举个比喻(通俗化解释):

你怀疑“龙鳞盔甲”是很坚硬的,你试图用刀砍都砍不破。然后你发现——

“这个盔甲做的方式,跟地球上所有已知最坚硬材料一样!”

那么即使你砍不出裂痕,你也可以相信它是真的硬,不是你刀太钝。


✅ 总结一句话:

归约法是一种“负向证明”方法,用来建立我们对问题“不可多项式求解”的信心。

它构成了NP 完全性理论的核心思想。


非常好!下面我将对你发的这 四张图内容进行逐句翻译 + 中文解释,并穿插直白通俗的讲解,帮助你真正“学进去”。


🟨 第 1 张幻灯片:Reasoning that a problem is hard

“推理一个问题是困难的”


原文 & 翻译:

  • You have learned ways to design polynomial-time algorithms for many problems.
    你已经学会了为很多问题设计多项式时间算法的方法。

    🟢 ✔️ 比如贪心、动态规划、图搜索、分治等


  • When faced with a new problem, you’ll try applying them in various ways.
    面对一个新问题,你会尝试用这些方法去解。


  • What if you don’t succeed?
    如果你搞不定这个问题呢?


  • Are there ways for you to know not to waste time trying in the first place?
    有没有什么方法能让你判断这个问题就别再白费力气了

    🟡 也就是:“能不能提前知道这玩意太难了,不要再试了?”


  • Can you prove there’s no poly-time algorithm?
    你能不能证明它不可能有多项式时间算法


  • In the problem of counting from 1 through n, the proof is easy as the output itself is exponential in the input.
    如果是“从 1 数到 n”的问题,证明它慢是简单的 —— 因为输出本身就是指数级的(相对于输入位数)

    🧠 举例:你输入 n=1000000 只用了 ~20 bits 表示,但要数完要花 100 万次


  • But what if the output is polynomial in the input?
    但如果输出只是多项式级别呢?

    🔴 也就是说:你没法通过“输出爆炸”来证明它慢


  • When can you give up?
    那你到底什么时候能死心不做了


🌟 中文总结:

我们可以很容易看出“输出太大 → 必然慢”,
但如果输出是正常的(多项式级),你如何证明“它无解”?

这就进入了“如何科学地认定问题是难的”的话题。


🟨 第 2 张幻灯片:Proving a negative


原文 & 翻译:

  • How to prove there is no polynomial time algorithm for a problem whose solution is polynomial in length?
    怎么证明一个“解本身不长”的问题,却无法用多项式时间解出


  • i.e., show that there is no algorithm of time O(n), or O(n²), or O(n³), ...
    换句话说,没有 O(n)、O(n²)、O(n³) 这类时间复杂度的算法。


  • Simple Answer: We don’t know how to prove such statements!
    答案很简单:我们根本不知道怎么证明这种事!


  • Don’t even have general technique to show that there is no O(n) algorithm.
    我们甚至没有通用方法来证明“没有 O(n) 算法”这件事。


🌟 中文总结:

我们现在的数学工具根本无法证明“某问题不属于 P”,这也是为什么 P vs NP 问题几十年没人能解决。


🟨 第 3 张幻灯片:“Proving” a negative: the science way


原文 & 翻译:

  • How to prove no Perpetual Motion Machine?
    怎么证明永动机不可能存在


  • We can prove one exists by building it.
    如果永动机能造出来,我们直接造一个就能证明它存在


  • We can’t prove none exists.
    但我们没法**证明“全世界任何一种永动机”都造不出来。


  • Especially if only “evidence” is that we tried and failed.
    特别是我们唯一的证据只是“我们试了,失败了”。


  • Many have tried to build one and failed.
    很多人都尝试造永动机,都失败了


  • A preponderance of evidence that is impossible.
    这就形成了一个“压倒性的证据”来支持“永动机不可能存在”。


  • But maybe only idiots tried to build PMMs!
    🤪 但也可能只是因为尝试造永动机的人都不够聪明……


  • Maybe possible if someone from CUHK tries?
    🤔 也许中大(CUHK)的人试试就成功了呢?

    (这是幽默自嘲)


🌟 中文总结:

不能形式地“证明”某事不可能,但可以用历史经验来判断:“已经有很多人试过失败了,大概率真的做不到。”


🟨 第 4 张幻灯片:A stronger “proof” for hardness


原文 & 翻译:

  • Prove that the “laws of physics” preclude its existence.
    如果你能证明它违反物理定律,就等于证明它不可能存在。


  • Lots of smart people have tested these laws.
    很多聪明人已经验证了这些物理定律。


  • Gives a real preponderance of evidence the laws are correct.
    这就构成了一个“非常真实可靠的证据链”来支持这些定律。


  • If a PMM was possible, it would prove those laws false.
    如果真能造出永动机,那就等于这些物理定律是错的


  • So, unless a very large number of smart people are all wrong, there is no perpetual motion machine.
    所以,除非所有聪明人都错了,否则永动机是不可能的。


  • We use this approach for deriving computational hardness.
    我们正是用这种方法来定义计算上的“困难”问题。


🌟 中文总结:

我们没法“形式证明”某问题无解,但可以借助“系统归纳 + 历史失败 + 理论推理”——这就是 NP-complete 理论的方法论基础。


🧾 总结一下你现在学到了什么:

内容意义
不能证明“没有 O(n)”算法数学上做不到
但可以科学归纳用归约 + 历史失败做证据
举例:永动机不可能因为违反物理定律 + 成千上万人失败
类比:我们怀疑 NP ≠ P因为几十年没人找到 poly-time 解法

 

非常好!你这两页内容标志着我们正式进入了 NP 完全性理论的技术核心:归约(Reduction)方法


🧭 第一张(第 30 页):Menu 更新,明确主题是:

**“证明问题很难”**的方式是通过:
🧱 hardness via reduction techniques(通过归约技巧证明难度)


🧾 中文逐句翻译 & 通俗解释(第 31 页)


📌 原文:

Frustrating: Huge number of fundamental problems have defied classification as being in P for decades.

中文翻译:

令人沮丧的是:大量基础性问题几十年来都无法被归类为 P 类问题(即找不到多项式时间算法)

🟡 举例:TSP、SAT、3-Coloring、SubsetSum…


📌 原文:

Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

中文翻译:

我们发现这些问题在计算本质上是等价的,它们可能只是一个真正困难问题的不同表现形式

🎯 通俗理解:
看上去它们题目不同,但它们都一样“无解”——只要你能解其中一个,其它都能顺带解。

这构成了 NP-complete 问题背后的惊人统一性!


📌 原文:

This enforces even more our belief that there is no poly-time algorithm.

中文翻译:

这进一步加深了我们对“这些问题无法多项式求解”的信念

🧠 因为这么多问题几十年都没人解决,而且还彼此等价
→ 不太可能大家都“恰好没找对方法”,更可能是它们本身就不是 P 类!


📌 原文:

Technique: Polynomial-time reductions.

中文翻译:

我们用的方法就是:多项式时间归约

🔁 什么叫归约?就是:

把一个问题 A 转化为 问题 B
如果 B 有解法,我们可以反向用它来解 A


✅ 通俗举例:归约就像“翻译机器语言”

想象你:

  • 不会解决“图着色问题”

  • 但你知道如何解决“3-SAT 公式可满足问题”

那么:

如果你能把“图着色”翻译成一个“SAT 公式”,
然后丢给别人用他们的算法解,再翻译回去
➜ 那你就解决了“图着色”!

这就叫做:归约(Reduction)


🎯 总结一句话:

我们无法直接证明某问题“没法快解”,
但我们可以通过“归约”证明它至少不比已知困难问题简单
➜ 这正是 NP-complete 问题的基础方法论。


可视化图解


🟦 标题:Polynomial-time reduction P ≤ₚ Q

也就是我们讲的:

把一个问题 P “变成” 问题 Q 来求解


📊 图的流程结构说明:

input X (P的问题输入)
   ↓
   A:多项式时间变换器(把 X 转成 Y)
   ↓
input Y(Q的问题输入)
   ↓
   算法 for Q(假设我们会解 Q)
   ↓
   Q(Y):Q 的输出
   ↓
   A⁻¹:再把 Q 的输出转成 P 的输出
   ↓
   P(X):最终得到 P 的输出

🧱 图中每一块解释:


🟨 A:

A:Algorithm that in polynomial time transforms the Input (question) for P to an input (question) for Q.

翻译
算法 A 是一个多项式时间过程,
把“P 的输入”变成“Q 的输入”

🧠 类比:P 是中文题目,A 把它翻译成 Q 能懂的英文题


🟨 算法 for Q:

你可以把它看成“Q 的解法”或者一个神灯。
我们现在是想:如果我有这个 Q 的能力,我能不能用它来解决 P?


🟨 A⁻¹:

A⁻¹: Algorithm that in polynomial time transforms the answer for Q to an answer for P.

翻译
算法 A⁻¹ 是个多项式时间过程,
把 “Q 的答案” 再翻译成 “P 的答案”

🧠 类比:你把神灯的英文回答翻译回中文,拿来交作业


🔴 总结这个图的核心意义:

如果你能:

  1. 把任何 P 的输入 X 变成 Q 的输入 Y(多项式时间)

  2. 用 Q 的算法得出 Q(Y)

  3. 再把 Q(Y) 变成 P(X) 的答案(多项式时间)

那么你就“等价地”解出了 P!


🧠 通俗类比总结:翻译机归约法

P 问题中文难题,不知道怎么解
A 算法把中文题翻译成英文题(Q 的格式)
Q 问题英文题,神灯能秒解
A⁻¹ 算法把英文答案翻译回中文答案

所以我们说:

✅ “P 归约到 Q” → Q 解决得好,也等于能解决 P
❌ Q 不归约到 P,因为翻译是单向的!


🧾 重要结论:

归约的核心目标是:传递困难度

如果 P ≤ₚ Q
那你有能力解决 Q,就等于你也能解决 P。

所以我们说:

Q 至少不比 P 容易,Q “更难”


如果你理解了这张图,那你就已经掌握了:

  • 什么是 p-归约

  • 为什么它能传递“困难”

  • 在 NP-complete 证明中我们要干啥


 

将已知难题 Partition 归约到 Knapsack
从而说明:Knapsack 也很可能是一个困难问题。

下面是详细讲解 + 通俗翻译。


📌 Slide 标题:Example: Knapsack(背包问题)


🧩 Step 1:已知困难问题 Partition(划分问题)

Partition:一个假设的“困难”问题:

  • 给你一组数字 {s₁, ..., sₙ},它们总和是 S。

  • 问:能不能把它们分成两组,每组和为 S/2?

🔴 这叫做 Partition Problem(划分问题)
🧠 它是经典的 NP-complete 问题之一。


🎒 Step 2:我们关心的问题 Knapsack(决策版背包问题)

Knapsack(决策版)问的是:

  • 给定一个容量为 B 的背包

  • 给你 n 个物品,每个物品有重量 bᵢ 和价值 vᵢ

  • 问:能不能选择一些物品装进背包,使得价值 ≥ V?


🎯 我们的目标是:

能不能用 Partition 的难度,来说明 Knapsack 也难?


❓ 怎么办?

  • 假设你已经有一个算法能解 Knapsack

  • 我想用它来“顺带”解 Partition

  • 如果能做到 ⇒ Knapsack 至少和 Partition 一样难!


✅ 要做的就是:

show that

[

\texttt{PARTITION} \leq_p \texttt{KNAPSACK}
]

也就是 把 Partition 转换成 Knapsack 的形式,然后调用神灯(Knapsack 解法)解决。

🧠 这就是我们之前学的多项式时间归约的本质应用!


🧠 通俗总结:

含义
Partition已知困难的 NP 完全问题
Knapsack我想证明它也很难
想法如果你能解 Knapsack,我就能顺带解 Partition
做法设计一个多项式时间转换,让 Partition 问题变成 Knapsack 问题输入
结果如果 Knapsack 有多项式时间解,那 Partition 也有(矛盾) ⇒ Knapsack 很可能也很难

💡 小贴士记忆口诀:

要证明某个问题 Q 很难,
就要从一个已知难的问题 P 出发:

P \leq_p Q
]
Q 至少不比 P 容易 ⇒ Q 也很难。


 

  • 其中 Partition 是我们已知很难的问题(🟥 known hard)

  • Knapsack 是我想证明也很难的问题(🟧 my problem)

 

 

 


🔹 “We now have an algorithm for Partition:”

我们现在拥有了一个 Partition 问题的算法(虽然它是“伪造”的):

这是怎么做到的?


✅ 步骤 1:把 Partition 的输入转为 Knapsack 的输入

Do a polynomial amount of work to turn the input to Partition into an input to Knapsack.

也就是说:我们用归约算法 A,将 {s1,...,sn}变成:

  • Knapsack 的物品集合(b_i = v_i = s_i)

  • 容量 B=S/2,目标价值 V=S/2

这个转换是多项式时间完成的。


✅ 步骤 2:调用“假设存在”的 Knapsack 算法

Call the hypothetical Knapsack algorithm.

这一步是假设你有一个解 Knapsack 的神灯,只要你给它输入,它就告诉你答案(YES or NO)。


✅ 步骤 3:把 Knapsack 的答案“翻译回” Partition 的答案

Do a polynomial (actually constant) amount of work to turn the Knapsack answer into a Partition answer.

这一步很简单:直接判断 Knapsack 有没有得到“价值恰好为 S/2S/2”的结果。


🔴 小结(关键判断):

If Knapsack result is S/2 (i.e., YES), return YES. Else, return NO.

Knapsack 答案 YES ⇨ Partition 有解
Knapsack 答案 NO ⇨ Partition 无解


✅ 推论逻辑(这是关键)

“If there is a polynomial-time algorithm for Knapsack, get one for Partition.”

如果 Knapsack 有一个多项式算法,我们就能构造出一个解决 Partition 的多项式算法。

🚨 但 Partition 是 NP-complete,我们相信没有多项式时间算法能解决它


“Since we believe no poly-time algorithm for Partition, conclude none exists for Knapsack.”

所以我们就可以反过来推断:
Knapsack 也不可能有多项式时间算法
⇨ 它也属于“困难”问题(NP-hard)


✅ 通俗总结:

步骤内容
构造归约Partition 输入 → Knapsack 输入(用归约算法 A)
调用“神灯”假设 Knapsack 有算法,用它来解
答案转换Knapsack YES ⇒ Partition YES
推理闭环Knapsack 有算法 ⇒ Partition 有算法
结论但我们相信 Partition 没有 ⇒ Knapsack 也不该有 ✅


🧩 主题:The class NP


✳️ 粉色句子:

We focus on solving only search problems.
我们现在只关注搜索问题(search problems)


✅ 为什么可以只看搜索问题?

Most of interesting problems can be transformed to search problems.
几乎所有我们关心的“有趣问题”都可以转成搜索问题。

比如:

  • 决策问题:“图中是否存在哈密顿环?”

  • 搜索问题:“图中那个环具体是哪几个点?”
    两者之间可以转换。


🔴 为什么搜索问题重要?

Search problems include most interesting problems
搜索问题覆盖了几乎所有我们在意的计算难题。

We can check solutions efficiently, even if finding them is hard.
虽然“找出解”可能很难,但“验证一个给定解是否正确”通常是简单的(多项式时间完成)。


📘 重点术语:NP 的定义

NP = class of non-deterministic polynomial problems
NP 指的是“非确定性多项式时间”问题类。

也就是说:

📜 正式定义:

NP = 所有这样的问题:

  • 如果答案是 YES,我们可以:

    • 猜一个解(non-deterministically guess)

    • 然后在多项式时间内验证这个解是否正确 ✅


🤔 更通俗理解:

想象你在解谜游戏:

  • “这个图有没有一个哈密顿路径?”

  • 你不会马上能找到,但如果有人告诉你一条路径(即**“猜”一个解**),

  • 你可以在几秒钟内检查是否每个点走了一次 → 验证是否成立

那这个问题就在 NP 里!


🎓 小结一下:

分类意思
P可以“快找到解”的问题
NP如果告诉你解,你能快验证是否对的问题

🎯 后续要走的路线

现在你已经知道:

  • 什么是 NP

  • 什么是归约

  • 怎样判断一个问题是不是“至少和已知难问题一样难”

接下来就会讲:

  • NP-complete(NP 完全问题)

  • 如何从一个 NP 完全问题出发,归约出一大堆 NP 难题

 

 

内容解释
什么是“hard”可以通过归约从已知 hard 问题得到
NP-complete 是谁一群最难的 NP 问题,彼此等价
怎么证明一个问题也很难?把 NP-complete 的问题归约到它

🧠 核心概念对比:NP-hard vs NP-complete


✅ 什么是 NP-hard?

Q 是 NP-hard
如果:NP 中的所有问题都能多项式时间归约到 Q:

💡直白解释:
  • Q 至少和所有 NP 问题一样难,甚至可能更难!

  • 即使 Q 本身 不在 NP 内部(比如不可验证),也可以是 NP-hard。

📌 例子:Halting problem(停机问题)

  • 是 NP-hard(因为比所有 NP 问题都难),

  • 但它不在 NP(根本就不可判定,不可验证)。


✅ 什么是 NP-complete?

Q 是 NP-complete(NP完全)
如果:

  1. Q 在 NP 中(也就是结果可验证)

  2. Q 是 NP-hard

💡直白解释:
  • 它是 NP 中最难的那一批问题

  • 如果你能在多项式时间内解决 Q,那你就能解决所有 NP 问题了!

  • 所以,我们才说 NP-complete 是“一类最难的 NP 问题”。

📌 经典例子:SAT, 3-SAT, CLIQUE, HAMILTONIAN CYCLE, PARTITION…


✅ 总结对比表

概念要求在 NP 里?比所有 NP 问题至少一样难?典型例子
NP-complete✅ 是✅ 是SAT, 3-SAT, CLIQUE, etc.
NP-hard❌ 不一定✅ 是Halting problem, TSP优化版等

📌 为什么重要?

如果你能找出一个 NP-complete 问题的多项式时间算法,
那么:所有 NP 问题都能在多项式时间内解决 —— 也就是 P = NP!


 

 

 

✅ 最终结论:

Halting 是 NP-hard
不是因为 Halting 用了 SAT 的思路,
而是因为:

我们把 SAT 转换成了 Halting 来解决
所以 Halting 至少和 SAT 一样难。


🔁 关键点:我们是把 SAT 归约到 Halting

意思是:我们利用「解决 Halting 的方法」,来「间接解决 SAT」。

 

 

✅ Step 1:

Prove that there is an NP-complete problem.
➤ The SAT problem.

📖 中文翻译:
首先,要证明存在某个问题是 NP-complete。
这个“第一个”问题,就是著名的 布尔可满足性问题(SAT),由 Cook-Levin 定理于 1971 年证明。

📌 通俗解释:
SAT 就是 NP-complete 的“祖师爷”。
所有后来的 NP-complete 问题,都是从它“传宗接代”而来。

 

 

 

 

📖 中文翻译:
Cook 1973 年证明了存在 NP-complete 问题! 这个问题就是 SAT(可满足性)
例如这个布尔表达式是否存在一种变量赋值,使得整体成立?

📌 通俗解释:
SAT 是一个给定布尔公式,问“有没有一种真/假赋值让它整体为真?”
Cook-Levin 定理告诉我们:这是第一个已知的 NP-complete 问题,也就是说:

❗ SAT 是所有 NP 问题中最难的之一。

 

📖 中文翻译:
像 SAT 这样的 Q 问题,是一个很好的出发点,用来证明别的问题也很难,
因为它“携带了 NP 所有问题的难度”。

📌 通俗解释:
你可以把 SAT 想成一个“携带 NP 难度的炸弹”,
你只要把它“炸到”另一个问题身上(即 SAT ≤ₚ 你的问题),
那么你就能说:“我的问题也很难”!

 

 

 

 

 

 

✅ 为什么这个归约成立?

  • ✔ 归约是“等价”的 —— 图中有独立集 ⇔ 公式可满足

  • ✔ 构造的图大小是多项式级别的(和公式一样大)

  • ✔ 所以我们完成了一个多项式归约

 

 

 

 

 

🟦 1. 有很多问题是 NP-complete

这些问题已经被证明了都很难(即:只要有一个能在多项式时间内解决,其他所有也能被解决):

包括:Clique、Independent Set、TSP、Graph Coloring、Hamiltonian Path、Longest Path、Vertex Cover、Subset Sum、Integer Programming 等等…

🟨 它们统称为:

NP 完全问题(NP-complete)
是 NP 类中最难的那些问题。


🟦 2. 科学家找了 50+ 年:

过去 50 多年来,科学家:

  • 用尽各种办法尝试设计出一个多项式时间算法解决其中某一个问题

  • 全部失败了

所以我们“强烈怀疑”这些问题根本没有多项式时间解法。


🟩 3. 这就是著名的 “P vs NP” 问题:

有没有可能:NP 中的所有问题,其实都有多项式时间算法?
换句话说,是不是其实:P = NP

  • 如果是,那这些 NP-complete 问题应该都能在多项式时间内解决

  • 如果不是,那就永远没法“高效”求解这些问题(只能猜然后验证)


🟨 4. 这不是随便的问题!

这是被 Clay 数学研究所列为 “千禧年七大数学难题” 之一
💰 奖金 $1,000,000(至今没人能解出来)


✅ 通俗翻译总结:

正式说法通俗说法
“P vs NP 问题”“你猜得到的东西,能不能也算得快?”
“NP-complete 问题”“最难的那一批猜谜题”
“我们找不到多项式算法”“全世界的人都猜不到怎么高效做”
“都互相归约了”“它们能相互‘变形’,本质一个难度”

 

✅ 通俗解释总结

  • P = NP?没人知道。

  • 所以 A / B 都选不了,这题根本“不能答”。

  • 这页是老师用幽默方式总结:我们走到了理解的前沿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值