[蓝桥杯 2017 省 AB] 分巧克力
题目描述
儿童节那天有 K K K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N N N 块巧克力,其中第 i i i 块是 H i × W i H_i \times W_i Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N N N 块巧克力中切出 K K K 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数。
-
大小相同。
例如一块 6 × 5 6 \times 5 6×5 的巧克力可以切出 6 6 6 块 2 × 2 2 \times 2 2×2 的巧克力或者 2 2 2 块 3 × 3 3 \times 3 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小 H i H_i Hi 计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N N N 和 K K K。 ( 1 ≤ N , K ≤ 1 0 5 ) (1 \le N,K \le 10^5) (1≤N,K≤105)。
以下 N N N 行每行包含两个整数 H i H_i Hi 和 W i W_i Wi。 ( 1 ≤ H i , W i ≤ 1 0 5 ) (1 \le H_i,W_i \le 10^5) (1≤Hi,Wi≤105)。
输入保证每位小朋友至少能获得一块 1 × 1 1 \times 1 1×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
样例 #1
样例输入 #1
2 10
6 5
5 6
样例输出 #1
2
提示
蓝桥杯 2022 省赛 A 组 I 题。
思路:这道题需要用二分法做一个判断,就是要对二分法要有一个明白的使用的环境
其次这道题的题意是要求每一块巧克力切分的是侯会留一些边角料
#include<bits/stdc++.h>
using namespace std;
int n,k;
int w[100005],h[100005];//使用数组储存数据
bool check(int len)
{
int cnt=0;
for(int i=1;i<=n;i++)
{
cnt+=(w[i]/len)*(h[i]/len);//对最大边长进行判断,len是最大边长的取值之一,如果以len为边长和k
// 进行比较
}
if(cnt>=k)//缩小最大边长的取值范围,
return true;
else
return false;
}
int main()
{
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d %d",&h[i],&w[i]);
}
int r=1,l=10005;
while(r<l)
{
int mild=(r+l+1)/2;//加一是因为,防止死循环 ,如果 不加1当【1,2】时会无限循环,mild=1,如果在check
//中不能通过,那么r仍为1;就造成了循环
if(check(mild))//进行判断
r=mild;
else
l=mild-1;
}
printf("%d",r);
return 0;
}