分析:
本题可以采用枚举算法求解,在Ioop数组里存储1~n,固定1不动,然后用next_permutation函数生成2~n的所有全排列,并判断相邻两个数之和是否为质数
另外,为简化质数的判断,可以把20以内的质数存储在数组pri中,即:
int pri[20]={0,0,2,3,0,5,0,7,0,0,0,11,0,13,0,0,0,17,0,19}
如果pri非0,则i为质数,否则(pri[i]为0),i为合数
此外,如果输入的n是奇数,因为会有2个奇数相邻,其和不可能是质数,因此无解,直接输出"no solution"
#include<bits/stdc++.h>
using namespace std;
int loop[12]; //存储n个位置上的数,loop[1]为放置在1号位置上的数
int pri[20] = {0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0,
17, 0, 19};
int main(){
int i, n;
cin >> n;
if(n%2){
cout << "no solution" << endl; return 0;
}
for(int i=1;i<=n;i++) loop[i] = i; //第一个全排列
do{
//检查当前排列是否符合要求
for(i=1;i<=n;i++){
//相邻2个数之和不是质数,提前结束判断
if(!pri[loop[i] + loop[(i+1-1)%n+1]]) break;
}
if(i>n){ //当前排列是个质数环
for(int j=1;j<n;j++) cout << loop[j] << " ";
cout << loop[n] << endl;
}
} while(next_permutation(loop+2, loop+n+1)); //生成2~n的全排列
return 0;
}