案例三:质数环问题

本文介绍了一种算法,通过枚举和next_permutation函数生成数组中所有可能的排列,判断相邻数之和是否为质数,找到符合条件的质数环。当输入为奇数时,由于存在两个奇数相邻,无法构成质数环,输出nosolution。
摘要由CSDN通过智能技术生成

分析:

本题可以采用枚举算法求解,在Ioop数组里存储1~n,固定1不动,然后用next_permutation函数生成2~n的所有全排列,并判断相邻两个数之和是否为质数
另外,为简化质数的判断,可以把20以内的质数存储在数组pri中,即:
int pri[20]={0,0,2,3,0,5,0,7,0,0,0,11,0,13,0,0,0,17,0,19}
如果pri非0,则i为质数,否则(pri[i]为0),i为合数
此外,如果输入的n是奇数,因为会有2个奇数相邻,其和不可能是质数,因此无解,直接输出"no solution" 

#include<bits/stdc++.h>
using namespace std;
int loop[12];  //存储n个位置上的数,loop[1]为放置在1号位置上的数
int pri[20] = {0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 
				17, 0, 19};
int main(){
	int i, n;
	cin >> n;
	if(n%2){
		cout << "no solution" << endl; return 0;
	}
	for(int i=1;i<=n;i++) loop[i] = i;  //第一个全排列
	do{
		//检查当前排列是否符合要求
		for(i=1;i<=n;i++){
			//相邻2个数之和不是质数,提前结束判断 
			if(!pri[loop[i] + loop[(i+1-1)%n+1]]) break;
		}
		if(i>n){ //当前排列是个质数环 
			for(int j=1;j<n;j++) cout << loop[j] << " ";
			cout << loop[n] << endl;
		} 
	} while(next_permutation(loop+2, loop+n+1)); //生成2~n的全排列 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值