线段树的学习

在力扣刷题中遇到一道“我的日程安排表”的题,经过求解和资料的参考利用线段树的方法解决,以下对线段树的知识进行一个简单的总结。

  • 线段树的定义

  线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。

对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。

使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。

struct SegmentTree{

int l, r, sum;//每层的左端点和右端点,当前层数的和

} tree[N << 2 | 1];

具体的线段树如下图:

 

 

  • 线段树的应用

  对于线段树的应用最基本的就是记录线段是否被覆盖,随时查询当前被覆盖线段的总长度。

在此时的结点结构中可以加入一个变量int count;代表代表当前结点代表的子树中被覆盖的线段长度和。

以上就是对线段树知识简单的总结。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值