题目链接
AcWing 240. 食物链
mid
题目描述
动物王国中有三类动物 A , B , C A,B,C A,B,C,这三类动物的食物链构成了有趣的环形。
A A A 吃 B B B, B B B 吃 C C C, C C C 吃 A A A。
现有 N N N 个动物,以 1 ∼ N 1∼N 1∼N 编号。
每个动物都是 A , B , C A,B,C A,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 N N N 个动物所构成的食物链关系进行描述:
-
第一种说法是
1 X Y
,表示 X X X 和 Y Y Y 是同类。 -
第二种说法是
2 X Y
,表示 X X X 吃 Y Y Y。
此人对 N N N 个动物,用上述两种说法,一句接一句地说出 K K K 句话,这 K K K 句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
- 当前的话与前面的某些真的话冲突,就是假话;
- 当前的话中 X X X 或 Y Y Y 比 N N N 大,就是假话;
- 当前的话表示 X X X 吃 X X X,就是假话。
你的任务是根据给定的 N N N 和 K K K 句话,输出假话的总数。
输入格式
第一行是两个整数 N N N 和 K K K,以一个空格分隔。
以下 K K K 行每行是三个正整数 D , X , Y D,X,Y D,X,Y,两数之间用一个空格隔开,其中 D D D 表示说法的种类。
-
若 D = 1 D=1 D=1,则表示 X X X 和 Y Y Y 是同类。
-
若 D = 2 D=2 D=2,则表示 X X X 吃 Y Y Y。
输出格式
只有一个整数,表示假话的数目。
数据范围
1 ≤ N ≤ 50000 , 0 ≤ K ≤ 100000 1≤N≤50000,0≤K≤100000 1≤N≤50000,0≤K≤100000
输入样例:
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
输出样例:
3
解法:带权值的并查集
我们定义 d [ x ] d[x] d[x] 为 节点 x x x 与它的父节点 p [ x ] p[x] p[x] 之间的关系:
- d [ x ] = 0 d[x] = 0 d[x]=0,说明节点 x x x 和它的父节点 p [ x ] p[x] p[x] 是同类;
- d [ x ] = 1 d[x] = 1 d[x]=1,说明节点 x x x 吃 它的父节点 p [ x ] p[x] p[x] ;
- d [ x ] = 2 d[x] = 2 d[x]=2,说明节点 x x x 被它的父节点 p [ x ] p[x] p[x] 吃;
我们注意到各个节点之间的关系是以 t = 3 t = 3 t=3 为周期的,也就是各个节点之间的关系肯定是 0 , 1 , 2 0,1,2 0,1,2。
路径压缩:
路径压缩之后的各个节点与根节点之间的关系为:
关系传递其实本质上是向量的运算。
对于节点 a , b a,b a,b 它们的根节点分别为 x , y x,y x,y。
我们设置 a a a 到 x x x 的向量为 a ⃗ \vec{a} a , b b b 到 y y y 的向量为 b ⃗ \vec{b} b。
-
当 x = y x = y x=y 时,说明节点 a a a 和 b b b 在同一个集合中。那么我们此时只需要判断当前 a a a 和 b b b 之间的关系 a b ⃗ \vec{ab} ab,是否与给定的已知关系 r e l rel rel 相等。如果相等,说明这句话是真话;否则是假话,答案 a n s + 1 ans + 1 ans+1。 a b ⃗ = a ⃗ − b ⃗ \vec{ab} = \vec{a} - \vec{b} ab=a−b,因为 a ⃗ − b ⃗ \vec{a} - \vec{b} a−b 可能为负数,所以我们需要注意取模;
-
当 x ≠ y x \neq y x=y 时,此时关系一定成立,我们只需要更新即可。
首先第一步,是将
a
a
a 和
b
b
b 加入到同一个集合中。
第二步,由于我们已知
a
⃗
,
b
⃗
,
a
b
⃗
\vec{a} , \vec{b} , \vec{ab}
a,b,ab,所以我们可以算出
x
⃗
\vec{x}
x ,更新。
即
x
⃗
=
b
⃗
−
a
⃗
+
a
b
⃗
\vec{x} = \vec{b} - \vec{a} + \vec{ab}
x=b−a+ab,也就是
d
[
x
]
=
d
[
b
]
−
d
[
a
]
+
r
e
l
d[x] = d[b] - d[a] + rel
d[x]=d[b]−d[a]+rel。
时间复杂度: O ( n ) O(n) O(n)
C++代码:
#include<iostream>
using namespace std;
const int N = 5e4 + 10;
int fa[N], d[N];
//求根节点的时候,顺便压缩路径
int find(int x)
{
if(fa[x] == x) return x;
int root = find(fa[x]);
d[x] += d[fa[x]];
return fa[x] = root;
}
int main()
{
int n,k; cin >> n >> k;
for(int i = 0; i <= n; i++) fa[i] = i;
int ans = 0;
for(int i = 1; i <= k; i++)
{
int D, a, b;
scanf("%d%d%d", &D, &a, &b);
//a 或者 b > n,是假话
if(a > n || b > n) {ans ++; continue;}
//自己吃自己也是假话
else if(D == 2 && a == b) {ans++; continue;}
else
{
int rel;
if(D == 2) rel = 1;
else rel = 0;
int x = find(a), y = find(b);
if(x == y)
{
//与给定关系 rel 矛盾,假话
//这里 先%3 再+3 再%3 ,是因为 d[a] - d[b] 有可能 < 0
if((((d[a] - d[b]) % 3) + 3) % 3 != rel)
ans++;
}
else
{
fa[x] = y;
d[x] = d[b] - d[a] + rel;
}
}
}
cout<< ans;
}