算法竞赛进阶指南 0X40数据结构进阶——食物链

该问题是一个关于处理环形食物链中真假信息的算法题,主要涉及并查集和路径压缩。给定N个动物和K句话,其中包含动物间的关系(同类或食物链),目标是找出所有错误的信息(假话)数量。解题方法是使用带权值的并查集,通过路径压缩优化,根据给定的关系更新节点关系,并判断是否与已知关系相符来确定真假。
摘要由CSDN通过智能技术生成

题目链接

AcWing 240. 食物链 mid

题目描述

动物王国中有三类动物 A , B , C A,B,C A,B,C,这三类动物的食物链构成了有趣的环形。

A A A B B B B B B C C C C C C A A A

现有 N N N 个动物,以 1 ∼ N 1∼N 1N 编号。

每个动物都是 A , B , C A,B,C A,B,C 中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这 N N N 个动物所构成的食物链关系进行描述:

  • 第一种说法是 1 X Y,表示 X X X Y Y Y 是同类。

  • 第二种说法是 2 X Y,表示 X X X Y Y Y

此人对 N N N 个动物,用上述两种说法,一句接一句地说出 K K K 句话,这 K K K 句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

  • 当前的话与前面的某些真的话冲突,就是假话;
  • 当前的话中 X X X Y Y Y N N N 大,就是假话;
  • 当前的话表示 X X X X X X,就是假话。

你的任务是根据给定的 N N N K K K 句话,输出假话的总数。

输入格式

第一行是两个整数 N N N K K K,以一个空格分隔。

以下 K K K 行每行是三个正整数 D , X , Y D,X,Y DXY,两数之间用一个空格隔开,其中 D D D 表示说法的种类。

  • D = 1 D=1 D=1,则表示 X X X Y Y Y 是同类。

  • D = 2 D=2 D=2,则表示 X X X Y Y Y

输出格式

只有一个整数,表示假话的数目。

数据范围

1 ≤ N ≤ 50000 , 0 ≤ K ≤ 100000 1≤N≤50000,0≤K≤100000 1N50000,0K100000

输入样例:

100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5

输出样例:

3

解法:带权值的并查集

我们定义 d [ x ] d[x] d[x] 为 节点 x x x 与它的父节点 p [ x ] p[x] p[x] 之间的关系:

  • d [ x ] = 0 d[x] = 0 d[x]=0,说明节点 x x x 和它的父节点 p [ x ] p[x] p[x] 是同类;
  • d [ x ] = 1 d[x] = 1 d[x]=1,说明节点 x x x 吃 它的父节点 p [ x ] p[x] p[x]
  • d [ x ] = 2 d[x] = 2 d[x]=2,说明节点 x x x 被它的父节点 p [ x ] p[x] p[x] 吃;

我们注意到各个节点之间的关系是以 t = 3 t = 3 t=3 为周期的,也就是各个节点之间的关系肯定是 0 , 1 , 2 0,1,2 0,1,2

路径压缩:
在这里插入图片描述
路径压缩之后的各个节点与根节点之间的关系为:

在这里插入图片描述
关系传递其实本质上是向量的运算。

对于节点 a , b a,b a,b 它们的根节点分别为 x , y x,y x,y

我们设置 a a a x x x 的向量为 a ⃗ \vec{a} a b b b y y y 的向量为 b ⃗ \vec{b} b

  1. x = y x = y x=y 时,说明节点 a a a b b b 在同一个集合中。那么我们此时只需要判断当前 a a a b b b 之间的关系 a b ⃗ \vec{ab} ab ,是否与给定的已知关系 r e l rel rel 相等。如果相等,说明这句话是真话;否则是假话,答案 a n s + 1 ans + 1 ans+1 a b ⃗ = a ⃗ − b ⃗ \vec{ab} = \vec{a} - \vec{b} ab =a b ,因为 a ⃗ − b ⃗ \vec{a} - \vec{b} a b 可能为负数,所以我们需要注意取模;

  2. x ≠ y x \neq y x=y 时,此时关系一定成立,我们只需要更新即可。

在这里插入图片描述
首先第一步,是将 a a a b b b 加入到同一个集合中。

在这里插入图片描述
第二步,由于我们已知 a ⃗ , b ⃗ , a b ⃗ \vec{a} , \vec{b} , \vec{ab} a ,b ,ab ,所以我们可以算出 x ⃗ \vec{x} x ,更新。

在这里插入图片描述
x ⃗ = b ⃗ − a ⃗ + a b ⃗ \vec{x} = \vec{b} - \vec{a} + \vec{ab} x =b a +ab ,也就是 d [ x ] = d [ b ] − d [ a ] + r e l d[x] = d[b] - d[a] + rel d[x]=d[b]d[a]+rel

时间复杂度: O ( n ) O(n) O(n)

C++代码:

#include<iostream>

using namespace std;

const int N = 5e4 + 10;
int fa[N], d[N];

//求根节点的时候,顺便压缩路径
int find(int x)
{
    if(fa[x] == x) return x;
    int root = find(fa[x]);
    d[x] += d[fa[x]];
    return fa[x] = root;
}

int main()
{
    int n,k; cin >> n >> k;
    
    for(int i = 0; i <= n; i++) fa[i] = i;
    
    int ans = 0;
    
    for(int i = 1; i <= k; i++)
    {
        int D, a, b;
        scanf("%d%d%d", &D, &a, &b);
        
        //a 或者 b > n,是假话
        if(a > n || b > n) {ans ++; continue;}
        
        //自己吃自己也是假话
        else if(D == 2 && a == b) {ans++; continue;}
        
        else
        {
            int rel;
            
            if(D == 2) rel = 1;
            else rel = 0;
            
            int x = find(a), y = find(b);
            
            if(x == y) 
            {
                //与给定关系 rel 矛盾,假话
                //这里 先%3 再+3 再%3 ,是因为 d[a] - d[b] 有可能 < 0
                if((((d[a] - d[b]) % 3) + 3) % 3 != rel)
                ans++;
            }
            
            else
            {
                fa[x] = y;
                d[x] = d[b] - d[a] + rel;
            }
        }
    }
    cout<< ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值