最短工期——拓扑排序

一个项目由若干个任务组成,任务之间有先后依赖顺序。项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务。现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工时间。

输入格式:
首先第一行给出两个正整数:项目里程碑的数量 N(≤100)和任务总数 M。这里的里程碑从 0 到 N−1 编号。随后 M 行,每行给出一项任务的描述,格式为“任务起始里程碑 任务结束里程碑 工作时长”,三个数字均为非负整数,以空格分隔。

输出格式:
如果整个项目的安排是合理可行的,在一行中输出最早完工时间;否则输出"Impossible"。

输入样例 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
输出样例 1:
18

输入样例 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
输出样例 2:
Impossible

解析:

提到先后顺序,就不难想到拓扑排序。值得注意的是,虽然这道题问的是总时间的最小值,但我们要求的是这张图的最长路。下面我们来证明一下:
首先要明确的是,题目给定的图不一定连通,因此我们就要把它分成多个部分。
接着可以得出两个结论:每个部分之间是相互独立的,也就是多个任务可以同时进行;每个部分内部是相互约束的,必须要等前面的任务完成后再能开始下一个任务。
最后,我们设每个部分的用时为 t1 ,t2 ,...,tk ,不难得出总用时为 max{ t1 ,t2 ,...,tk },即为原图最长路。
当然,我们也要确定该项目的合理性。

#include <bits/stdc++.h>
using namespace std;
#define int long long 
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
typedef pair<int,int> PII;
const int N=1e6+10;
struct node
{
    int v,w;
};
vector <node> g[N];
int n,m;
int d[N],s[N];
queue <int> q;
vector <int> k;
signed main()
{
    ios;
    cin>>n>>m;
    while (m--)
    {
        int a,b,w;
        cin>>a>>b>>w;
        g[a].push_back({b,w});
        d[b]++;
    }
    for (int i=0;i<n;i++)
    {
        if (!d[i]) q.push(i);
    }
    while (q.size())
    {
        int t=q.front();
        q.pop();
        k.push_back(t);
        for (auto x:g[t])
        {
            int v=x.v,w=x.w;
            s[v]=max(s[v],s[t]+w);
            d[v]--;
            if (!d[v]) q.push(v);
        }
    }
    if (k.size()==n)
    {
        int ans=0;
        for (int i=0;i<n;i++) ans=max(ans,s[i]);
        cout<<ans;
    }
    else cout<<"Impossible";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值