一、实验目的
(1)掌握在Linux虚拟机中安装Hadoop和Spark的方法;
(2)熟悉HDFS的基本使用方法;
(3)掌握使用Spark访问本地文件和HDFS文件的方法。
二、实验内容和要求
1.安装Hadoop和Spark
进入Linux系统,参照PPT,完成Hadoop和Spark的安装。自行选择安装模式。
2.HDFS常用操作
使用hadoop用户名登录进入Linux系统,启动Hadoop,参照相关Hadoop书籍或网络资料,或者也可以参考本课程PPT,使用Hadoop提供的Shell命令完成如下操作:
- 启动Hadoop,在HDFS中创建用户目录“/user/hadoop”;
使用hadoop用户名登录进入Linux系统,假设Hadoop系统被安装在“/usr/local/hadoop”目录。使用如下命令启动Hadoop:
$cd /usr/local/hadoop
$./sbin/start-dfs.sh #启动HDFS
$./bin/hdfs dfs -mkdir -p /user/hadoop #在HDFS中创建用户目录/user/hadoop
- 在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下;
$cd /home/hadoop
$vim test.txt
#在test.txt中随便输入一些内容,并保存退出vim编辑器
$cd /usr/local/hadoop
$./bin/hdfs dfs -put /home/hadoop/test.txt /user/hadoop
- 把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下;
$ cd /usr/local/hadoop
$./bin/hdfs dfs -get /user/hadoop/test.txt /home/hadoop/下载
- 将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示;
$ cd /usr/local/hadoop
$./bin/hdfs dfs -cat /user/hadoop/test.txt
- 在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下;
$ cd /usr/local/hadoop
$./bin/hdfs dfs -mkdir /user/hadoop/input
$./bin/hdfs dfs -cp /user/hadoop/test.txt /user/hadoop/input
- 删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容。
$ cd /usr/local/hadoop
$./bin/hdfs dfs -rm /user/hadoop/test.txt
$./bin/hdfs dfs -rm -r /user/hadoop/input
3.Spark读取文件系统的数据
(1)在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数;
假设Spark安装在“/usr/local/spark”目录。
$ cd /usr/local/spark
$./bin/spark-shell
scala>val textFile=sc.textFile("file:///home/hadoop/test.txt")
scala>textFile.count()
(2)在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;
scala>val textFile=sc.textFile("hdfs://localhost:9000/user/hadoop/test.txt")
scala>textFile.count()
(3)编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令。
使用hadoop用户名登录Linux系统,打开一个终端,在Linux终端中,执行如下命令创建一个文件夹 sparkapp作为应用程序根目录:
$ cd ~ # 进入用户主文件夹
$ mkdir ./sparkapp # 创建应用程序根目录
$ mkdir -p ./sparkapp/src/main/scala # 创建所需的文件夹结构
需要注意的是,为了能够使用sbt对Scala应用程序进行编译打包,需要把应用程序代码存放在应用程序根目录下的“src/main/scala”目录下。下面使用vim编辑器在“~/sparkapp/src/main/scala”下建立一个名为 SimpleApp.scala的Scala代码文件,命令如下:
$ cd ~
$ vim ./sparkapp/src/main/scala/SimpleApp.scala
然后,在SimpleApp.scala代码文件中输入以下代码:
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = " hdfs://localhost:9000/user/hadoop/test.txt"
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2)
val num = logData.count()
printf("The num of this file is %d", num)
}
}
下面使用sbt对Scala 程序进行编译打包。
SimpleApp.scala程序依赖于Spark API,因此,需要通过sbt进行编译打包以后才能运行。 首先,需要使用vim编辑器在“~/sparkapp”目录下新建文件simple.sbt,命令如下:
$ cd ~
$ vim ./sparkapp/simple.sbt
simple.sbt文件用于声明该独立应用程序的信息以及与 Spark的依赖关系(实际上,只要扩展名使用.sbt,文件名可以不用simple,可以自己随意命名,比如mysimple.sbt)。需要在simple.sbt文件中输入以下内容:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.15"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.2.0"
为了保证sbt能够正常运行,先执行如下命令检查整个应用程序的文件结构:
$ cd ~/sparkapp
$ find .
文件结构应该是类似如下所示的内容:
.
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala
./simple.sbt
接下来,可以通过如下代码将整个应用程序打包成 JAR:
$ cd ~/sparkapp #一定把这个目录设置为当前目录
$ /usr/local/sbt/sbt package
对于刚刚安装的Spark和sbt而言,第一次执行上面命令时,系统会自动从网络上下载各种相关的依赖包,因此上面执行过程需要消耗几分钟时间,后面如果再次执行sbt package命令,速度就会快很多,因为不再需要下载相关文件。执行上述命令后,屏幕上会返回如下类似信息:
$ /usr/local/sbt/sbt package
OpenJDK 64-Bit Server VM warning: ignoring option MaxPermSize=256M; support was removed in 8.0
[info] Set current project to Simple Project (in build file:/home/hadoop/sparkapp/)
……
[info] Done packaging.
[success] Total time: 2 s, completed 2023-1-1 20:15:17
生成的JAR包的位置为“~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar”。
对于前面sbt打包得到的应用程序JAR包,可以通过 spark-submit 提交到 Spark 中运行,命令如下:
$ /usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar