Spark和Hadoop的安装

一、实验目的

(1)掌握在Linux虚拟机中安装Hadoop和Spark的方法;

(2)熟悉HDFS的基本使用方法;

(3)掌握使用Spark访问本地文件和HDFS文件的方法。

二、实验内容和要求

1.安装HadoopSpark

       进入Linux系统,参照PPT,完成HadoopSpark的安装。自行选择安装模式。

2.HDFS常用操作

        使用hadoop用户名登录进入Linux系统,启动Hadoop,参照相关Hadoop书籍或网络资料,或者也可以参考本课程PPT,使用Hadoop提供的Shell命令完成如下操作:

  1. 启动Hadoop,在HDFS中创建用户目录“/user/hadoop”;

        使用hadoop用户名登录进入Linux系统,假设Hadoop系统被安装在“/usr/local/hadoop”目录。使用如下命令启动Hadoop:

$cd  /usr/local/hadoop

$./sbin/start-dfs.sh  #启动HDFS

$./bin/hdfs  dfs  -mkdir  -p /user/hadoop  #在HDFS中创建用户目录/user/hadoop

  1. 在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下;
$cd  /home/hadoop

$vim test.txt

#在test.txt中随便输入一些内容,并保存退出vim编辑器

$cd  /usr/local/hadoop

$./bin/hdfs  dfs  -put  /home/hadoop/test.txt  /user/hadoop

  1. 把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下;
$ cd  /usr/local/hadoop

$./bin/hdfs  dfs  -get  /user/hadoop/test.txt  /home/hadoop/下载

  1. 将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示;
$ cd  /usr/local/hadoop

$./bin/hdfs  dfs  -cat  /user/hadoop/test.txt

  1. 在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下;
$ cd  /usr/local/hadoop

$./bin/hdfs  dfs  -mkdir  /user/hadoop/input

$./bin/hdfs  dfs  -cp  /user/hadoop/test.txt  /user/hadoop/input

  1. 删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容。
$ cd  /usr/local/hadoop

$./bin/hdfs  dfs  -rm  /user/hadoop/test.txt

$./bin/hdfs  dfs  -rm  -r  /user/hadoop/input          

3.Spark读取文件系统的数据

(1)在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数;

假设Spark安装在“/usr/local/spark”目录。

$ cd  /usr/local/spark

$./bin/spark-shell

scala>val textFile=sc.textFile("file:///home/hadoop/test.txt")

scala>textFile.count()

(2)在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;

scala>val textFile=sc.textFile("hdfs://localhost:9000/user/hadoop/test.txt")

scala>textFile.count()

(3)编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令。

        使用hadoop用户名登录Linux系统,打开一个终端,在Linux终端中,执行如下命令创建一个文件夹 sparkapp作为应用程序根目录:

$ cd  ~           # 进入用户主文件夹

$ mkdir  ./sparkapp        # 创建应用程序根目录

$ mkdir  -p  ./sparkapp/src/main/scala     # 创建所需的文件夹结构

        需要注意的是,为了能够使用sbt对Scala应用程序进行编译打包,需要把应用程序代码存放在应用程序根目录下的“src/main/scala”目录下。下面使用vim编辑器在“~/sparkapp/src/main/scala”下建立一个名为 SimpleApp.scala的Scala代码文件,命令如下:

$ cd  ~

$ vim  ./sparkapp/src/main/scala/SimpleApp.scala

        然后,在SimpleApp.scala代码文件中输入以下代码:

/* SimpleApp.scala */

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf



object SimpleApp {

    def main(args: Array[String]) {

        val logFile = " hdfs://localhost:9000/user/hadoop/test.txt"

        val conf = new SparkConf().setAppName("Simple Application")

        val sc = new SparkContext(conf)

        val logData = sc.textFile(logFile, 2)

        val num = logData.count()

        printf("The num of this file is %d", num)

    }

}

        下面使用sbt对Scala 程序进行编译打包。

        SimpleApp.scala程序依赖于Spark API,因此,需要通过sbt进行编译打包以后才能运行。 首先,需要使用vim编辑器在“~/sparkapp”目录下新建文件simple.sbt,命令如下:

$ cd  ~

$ vim  ./sparkapp/simple.sbt

         simple.sbt文件用于声明该独立应用程序的信息以及与 Spark的依赖关系(实际上,只要扩展名使用.sbt,文件名可以不用simple,可以自己随意命名,比如mysimple.sbt)。需要在simple.sbt文件中输入以下内容:

name := "Simple Project"

version := "1.0"

scalaVersion := "2.12.15"

libraryDependencies += "org.apache.spark" %% "spark-core" % "3.2.0"

        为了保证sbt能够正常运行,先执行如下命令检查整个应用程序的文件结构:

$ cd  ~/sparkapp

$ find  .

        文件结构应该是类似如下所示的内容:

.

./src

./src/main

./src/main/scala

./src/main/scala/SimpleApp.scala

./simple.sbt

      接下来,可以通过如下代码将整个应用程序打包成 JAR:

$ cd  ~/sparkapp  #一定把这个目录设置为当前目录

$ /usr/local/sbt/sbt  package

      对于刚刚安装的Spark和sbt而言,第一次执行上面命令时,系统会自动从网络上下载各种相关的依赖包,因此上面执行过程需要消耗几分钟时间,后面如果再次执行sbt package命令,速度就会快很多,因为不再需要下载相关文件。执行上述命令后,屏幕上会返回如下类似信息:

$ /usr/local/sbt/sbt package

OpenJDK 64-Bit Server VM warning: ignoring option MaxPermSize=256M; support was removed in 8.0

[info] Set current project to Simple Project (in build file:/home/hadoop/sparkapp/)

……

[info] Done packaging.

[success] Total time: 2 s, completed 2023-1-1 20:15:17

      生成的JAR包的位置为“~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar”。

       对于前面sbt打包得到的应用程序JAR包,可以通过 spark-submit 提交到 Spark 中运行,命令如下:

$ /usr/local/spark/bin/spark-submit  --class  "SimpleApp" ~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值