张雪峰高考志愿资料分享

链接: https://pan.baidu.com/s/1ZmBtNW-WRnW4cVTkIQxRww?pwd=6666

--来自百度网盘超级会员v5的分享

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
### 回答1: 参考资料: 1. 夏志伟,自适应粒子群优化BP神经网络进行预测,《模式识别与人工智能》,第 25 卷第 8 期,2012 年 8 月 2. 黄贵松,张超,自适应粒子群优化算法的 BP 神经网络应用研究,《计算机应用研究》,第 28 卷第 8 期,2011 年 8 月 3. 杨琼,张波,自适应粒子群算法的 BP 神经网络应用研究,《计算机应用》,第 31 卷第 12 期,2012 年 12 月 ### 回答2: 自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)是一种进化优化算法,结合了粒子群优化算法和自适应策略,主要用于优化BP神经网络的预测性能。以下是一些关于自适应粒子群优化BP神经网络进行预测的参考资料: 1. 张立峰, 蔡佳楠. 基于自适应粒子群优化BP神经网络的预测模型研究[J]. 科技资讯, 2019(19):81-82. 这篇文章在介绍自适应粒子群优化BP神经网络的基础上,研究了其在预测模型中的应用,并进行了实验验证。 2. 张雪峰, 王佳微. 基于遗传算法与粒子群优化的BP神经网络在预测上的应用研究[J]. 计算机应用与软件, 2017, 34(11):9-11. 这篇文章提出了一种基于遗传算法和粒子群优化的改进BP神经网络,并应用于预测问题。对比了传统BP神经网络和改进模型的性能,并进行了分析讨论。 3. 岳欢欢等. 应用自适应粒子群优化算法优化BP神经网络的水质预测研究[J]. 仪器仪表学报, 2019, 40(7):848-855. 这篇文章以水质预测为案例,通过应用自适应粒子群算法对BP神经网络进行优化,提高了水质预测的准确性和稳定性。实验结果表明,该方法在水质预测问题上具有较好的应用潜力。 4. 董彦,万金良. 基于自适应粒子群优化 BP 神经网络的疾病预测模型[J]. 现代计算机, 2020,46(7):38-42. 这篇文章探讨了在疾病预测领域中应用自适应粒子群优化BP神经网络的方法。通过对比实验,验证了该方法在疾病预测中的有效性和优越性。 这些参考资料可以帮助你更深入地了解自适应粒子群优化BP神经网络在预测问题中的应用,并为你的研究提供理论基础和实验案例。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值