优化类和预测类模型代码

优化类模型

蚁群优化算法(Ant Colony Optimization, ACO)

%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%%
%初始化
clear all; %清除所有变量
close all; %清图
clc; %清屏
m = 50; %蚂蚁个数
Alpha = 1; %信息素重要程度参数
Beta = 5; %启发式因子重要程度参数
Rho = 0.1; %信息素蒸发系数
G = 200; %最大迭代次数
Q = 100; %信息素增加强度系数
C = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;...
    3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;...
    2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;...
    3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
    3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;...
    2370 2975]; %31 个省会城市坐标
%第一步:变量初始化
n = size(C,1); %n 表示问题的规模(城市个数)
D = zeros(n,n); %D 表示两个城市距离间隔矩阵
for i = 1:n
    for j = 1:n
        if i ~= j
            D(i,j) = ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
        else
            D(i,j) = eps;
        end
        D(j,i) = D(i,j);
    end
end
Eta = 1./D; %Eta 为启发因子,这里设为距离的倒数
Tau = ones(n,n); %Tau 为信息素矩阵
Tabu = zeros(m,n); %存储并记录路径的生成
NC = 1; %迭代计数器
R_best = zeros(G,n); %各代最佳路线
L_best = inf.*ones(G,1); %各代最佳路线的长度
figure(1); %优化解
while NC <= G
    %第二步:将 m 只蚂蚁放到 n 个城市上
    Randpos = [];
    for i = 1:(ceil(m/n))
        Randpos = [Randpos,randperm(n)];
    end
    Tabu(:,1) = (Randpos(1,1:m))';
    %第三步:m 只蚂蚁按概率函数选择下一座城市,完成各自的周游
    for j = 2:n
        for i = 1:m
            visited = Tabu(i,1:(j-1)); %已访问的城市
            J = zeros(1,(n-j+1)); %待访问的城市
            P = J; %待访问城市的选择概率分布
            Jc = 1;
            for k = 1:n
                if length(find(visited==k))==0
                    J(Jc) = k;
                    Jc = Jc+1;
                end
            end
            %%%%%%%%%%%计算待选城市的概率分布%%%%%%%%%%%
            for k = 1:length(J)
                P(k) = (Tau(visited(end),J(k))^Alpha)...
                    *(Eta(visited(end),J(k))^Beta);
            end
            P = P/(sum(P));
            %%%%%%%%%%%按概率原则选取下一个城市%%%%%%%%%
            Pcum = cumsum(P);
            Select = find(Pcum >= rand);
            to_visit = J(Select(1));
            Tabu(i,j) = to_visit;
        end
    end
    if NC >= 2
        Tabu(1,:) = R_best(NC-1,:);
    end
    %第四步:记录本次迭代最佳路线
    L = zeros(m,1);
    for i = 1:m
        R = Tabu(i,:);
        for j = 1:(n-1)
            L(i) = L(i)+D(R(j),R(j+1));
        end
        L(i) = L(i)+D(R(1),R(n));
    end
    L_best(NC) = min(L);
    pos = find(L==L_best(NC));
    R_best(NC,:) = Tabu(pos(1),:);
    %第五步:更新信息素
    Delta_Tau = zeros(n,n);
    for i = 1:m
        for j = 1:(n-1)
            Delta_Tau(Tabu(i,j),Tabu(i,j+1)) = ...
                Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
        end
        Delta_Tau(Tabu(i,n),Tabu(i,1)) = ...
            Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
    end
    Tau = (1-Rho).*Tau+Delta_Tau;
    %第六步:禁忌表清零
    Tabu = zeros(m,n);
    %%%%%%%%%%%%%%%%%历代最优路线%%%%%%%%%%%%%%%
    for i = 1:n-1
        plot([ C(R_best(NC,i),1), C(R_best(NC,i+1),1)],...
            [C(R_best(NC,i),2), C(R_best(NC,i+1),2)],'bo-');
        hold on;
    end
    plot([C(R_best(NC,n),1), C(R_best(NC,1),1)],...
        [C(R_best(NC,n),2), C(R_best(NC,1),2)],'ro-');
    title(['优化最短距离:',num2str(L_best(NC))]);
    hold off;
    pause(0.005);
    NC = NC+1;
end
%第七步:输出结果
Pos = find(L_best==min(L_best));
Shortest_Route = R_best(Pos(1),:); %最佳路线
Shortest_Length = L_best(Pos(1)); %最佳路线长度
figure(2),
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')

 粒子群优化算法

clc;clear;close all;
% 初始化种群
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式
figure(1);ezplot(f,[0,0.01,20]);
N = 50; % 初始种群个数
d = 1; % 空间维数
ger = 100; % 最大迭代次数
limit = [0, 20]; % 设置位置参数限制
vlimit = [-1, 1]; % 设置速度限制
w = 0.8; % 惯性权重
c1 = 0.5; % 自我学习因子
c2 = 0.5; % 群体学习因子
for i = 1:d
x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置
end
v = rand(N, d); % 初始种群的速度
xm = x; % 每个个体的历史最佳位置
ym = zeros(1, d); % 种群的历史最佳位置
fxm = zeros(N, 1); % 每个个体的历史最佳适应度
fym = -inf; % 种群历史最佳适应度
hold on
plot(xm, f(xm), 'ro');title('初始状态图');
figure(2)
%群体更新
iter = 1;
record = zeros(ger, 1); % 记录器
while iter <= ger
fx = f(x) ; % 个体当前适应度
for i = 1:N
if fxm(i) < fx(i)
fxm(i) = fx(i); % 更新个体历史最佳适应度
xm(i,:) = x(i,:); % 更新个体历史最佳位置
end
end
if fym < max(fxm)
[fym, nmax] = max(fxm); % 更新群体历史最佳适应度
ym = xm(nmax, :); % 更新群体历史最佳位置
end
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新
% 边界速度处理
v(v > vlimit(2)) = vlimit(2);
v(v < vlimit(1)) = vlimit(1);
x = x + v;% 位置更新
% 边界位置处理
x(x > limit(2)) = limit(2);
x(x < limit(1)) = limit(1);
record(iter) = fym;%最大值记录
% x0 = 0 : 0.01 : 20;
% plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
% pause(0.1)
iter = iter+1;
end
figure(3);plot(record);title('收敛过程')
x0 = 0 : 0.01 : 20;
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')
disp(['最大值:',num2str(fym)]);
disp(['变量取值:',num2str(ym)]);

模拟退火优化算法

% SA 模拟退火: 求解函数y = 11*sin(x) + 7*cos(5*x)在[-3,3]内的最大值(动画演示)
tic
clear; clc

% 绘制函数的图形
x = -3:0.1:3;
y = 11*sin(x) + 7*cos(5*x);
figure
plot(x,y,'b-')
hold on  % 不关闭图形,继续在上面画图

% 参数初始化
narvs = 1; % 变量个数
T0 = 100;   % 初始温度
T = T0; % 迭代中温度会发生改变,第一次迭代时温度就是T0
maxgen = 200;  % 最大迭代次数
Lk = 100;  % 每个温度下的迭代次数
alfa = 0.95;  % 温度衰减系数
x_lb = -3; % x的下界
x_ub = 3; % x的上界

%  随机生成一个初始解
x0 = zeros(1,narvs);
for i = 1: narvs
    x0(i) = x_lb(i) + (x_ub(i)-x_lb(i))*rand(1);    
end
y0 = Obj_fun1(x0); % 计算当前解的函数值
h = scatter(x0,y0,'*r');  % scatter是绘制二维散点图的函数(这里返回h是为了得到图形的句柄,未来我们对其位置进行更新)

% 定义一些保存中间过程的量,方便输出结果和画图
max_y = y0;     % 初始化找到的最佳的解对应的函数值为y0
MAXY = zeros(maxgen,1); % 记录每一次外层循环结束后找到的max_y (方便画图)

% 模拟退火过程
for iter = 1 : maxgen  % 外循环, 我这里采用的是指定最大迭代次数
    for i = 1 : Lk  % 内循环,在每个温度下开始迭代
        y = randn(1,narvs);  % 生成1行narvs列的N(0,1)随机数
        z = y / sqrt(sum(y.^2)); % 根据新解的产生规则计算z
        x_new = x0 + z*T; % 根据新解的产生规则计算x_new的值
        % 如果这个新解的位置超出了定义域,就对其进行调整
        for j = 1: narvs
            if x_new(j) < x_lb(j)
                r = rand(1);
                x_new(j) = r*x_lb(j)+(1-r)*x0(j);
            elseif x_new(j) > x_ub(j)
                r = rand(1);
                x_new(j) = r*x_ub(j)+(1-r)*x0(j);
            end
        end
        x1 = x_new;    % 将调整后的x_new赋值给新解x1
        y1 = Obj_fun1(x1);  % 计算新解的函数值
        if y1 > y0    % 如果新解函数值大于当前解的函数值
            x0 = x1; % 更新当前解为新解
            y0 = y1;
        else
            p = exp(-(y0 - y1)/T); % 根据Metropolis准则计算一个概率
            if rand(1) < p   % 生成一个随机数和这个概率比较,如果该随机数小于这个概率
                x0 = x1; % 更新当前解为新解
                y0 = y1;
            end
        end
        % 判断是否要更新找到的最佳的解
        if y0 > max_y  % 如果当前解更好,则对其进行更新
            max_y = y0;  % 更新最大的y
            best_x = x0;  % 更新找到的最好的x
        end
    end
    MAXY(iter) = max_y; % 保存本轮外循环结束后找到的最大的y
    T = alfa*T;   % 温度下降
    pause(0.01)  % 暂停一段时间(单位:秒)后再接着画图
    h.XData = x0;  % 更新散点图句柄的x轴的数据(此时解的位置在图上发生了变化)
    h.YData = Obj_fun1(x0); % 更新散点图句柄的y轴的数据(此时解的位置在图上发生了变化)
end

disp('最佳的位置是:'); disp(best_x)
disp('此时最优值是:'); disp(max_y)

pause(0.5)
h.XData = [];  h.YData = [];  % 将原来的散点删除
scatter(best_x,max_y,'*r');  % 在最大值处重新标上散点
title(['模拟退火找到的最大值为', num2str(max_y)])  % 加上图的标题

% 画出每次迭代后找到的最大y的图形
figure
plot(1:maxgen,MAXY,'b-');
xlabel('迭代次数');
ylabel('y的值');
toc

function y = Obj_fun1(x)
    y = 11*sin(x) + 7*cos(5*x);
end

预测类模型

BP时序预测

需要数据集文件,时序预测很多列举一个

clear                   
clc                     
%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

% 构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  创建网络
net = newff(p_train, t_train, 5);

%  设置训练参数
net.trainParam.epochs = 1000;     % 迭代次数 
net.trainParam.goal = 1e-6;       % 误差阈值
net.trainParam.lr = 0.01;         % 学习率

%  训练网络
net= train(net, p_train, t_train);

%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%  绘图
figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {strcat('训练集预测结果对比:', ['RMSE=' num2str(error1)])};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {strcat('测试集预测结果对比:', ['RMSE=' num2str(error2)])};
title(string)
xlim([1, N])
grid

%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
%  MAPE
mape1 = sum(abs((T_sim1 - T_train)./T_train)) ./ M ;
mape2 = sum(abs((T_sim2 - T_test )./T_test )) ./ N ;

disp(['训练集数据的MAPE为:', num2str(mape1)])
disp(['测试集数据的MAPE为:', num2str(mape2)])

%  绘制散点图
sz = 25;
c = 'b';

figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

Logistic回归

%% 数据准备
% x_{i} \in {1 \times d} 一个样本
% y_{i} \in {0,1}
% 二分类 随机生成数据。  200个数据  每个数据2个特征
% 在我们的数据中,一行表示一个样本
clc
clear

data=1*rand(300,2);
label=zeros(300,1);
 
label((data(:,2)+data(:,1)>1))=1;
%在data上加常数特征项;
data=[data,ones(size(data,1),1)];
 
%打乱顺序
randIndex = randperm(size(data,1));
data_new=data(randIndex,:);
label_new=label(randIndex,:);
 
%80%训练  20%测试
k=0.8*size(data,1);
X=data_new(1:k,:);
Y=label_new(1:k,:);
tstX=data_new(k+1:end,:);
tstY=label_new(k+1:end,:);
 

max_iter = 300;
%% 调用函数
[loss,acc,pre_Y] = logistic_regression(X,Y,tstX,tstY,max_iter);
acc
% 画出迭代过程损失函数值的变化
plot(loss)

function [loss,acc,pre_Y] = logistic_regression(X,Y,tstX,tstY,max_iter)
%% 梯度下降法
iter = 1;
epsilon = 1e-5;
loss = zeros(max_iter,1);
alpha = 1; % 学习率为1
[m,d] = size(X);
theta = rand(d,1); % 初始化
while iter < max_iter
    % 计算梯度
    % 将求和写成矩阵的形式
    h = 1./(1+exp(-X*theta)); % h(\theta)
    item1 = repmat(h,1,d); 
    item2 = repmat(Y,1,d);
    g = sum(X.*(item1-item2))/m;  
    g = g'; % 梯度    
    
    theta = theta-alpha*g;
    
    iter = iter+1;
    loss(iter) = -(Y'*log(h)+(1-Y')*log(1-h))/m; % 计算交叉熵损失
    
    if norm(loss(iter)-loss(iter-1)) < epsilon
        break;
    end
end
%% 预测
tmp = tstX*theta;
p1 = 1./(1+exp(-tmp));
% 预测值
pre_Y = p1>0.5; % 大于0.5表示正类
% 精度
acc = sum(pre_Y==tstY)/length(tstY)*100;
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值