前缀和详解

题目一:⼀维前缀和

1. 题⽬链接:https://www.nowcoder.com/share/jump/3971807151727244713106

2. 题⽬描述

在这里插入图片描述

3. 解法(前缀和):

算法思路:

a. 先预处理出来⼀个「前缀和」数组:
⽤ dp[i] 表⽰: [1, i] 区间内所有元素的和,那么 dp[i - 1] ⾥⾯存的就是 [1, i - 1] 区间内所有元素的和,那么:可得递推公式: dp[i] = dp[i - 1] + arr[i] ;

b. 使⽤前缀和数组,「快速」求出「**某⼀个区间内」**所有元素的和:
当询问的区间是 [l, r] 时:区间内所有元素的和为: dp[r] - dp[l - 1]

代码

import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息 

public class Main {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 int n = scan.nextInt();
 int q = scan.nextInt();
 // 为了防⽌溢出,⽤ long 类型的数组 
 int[] arr = new int[n + 1];
 long[] dp = new long[n + 1];
 for (int i = 1; i <= n; i++) { // 读数据 
 arr[i] = scan.nextInt();
 }
 for (int i = 1; i <= n; i++) { // 处理前缀和数组 
 dp[i] = dp[i - 1] + arr[i];
 }
 while (q > 0) {
 int l = scan.nextInt();
 int r = scan.nextInt();
 System.out.println(dp[r] - dp[l - 1]); // 使⽤前缀和数组 
 q--;
 }
 }
}

题目二:⼆维前缀和

  1. 题⽬链接:【模板】⼆维前缀和
  2. 题⽬描述
    在这里插入图片描述

备注:读入数据可能很大,请注意读写时间。

3. 解法:

算法思路:

类⽐于⼀维数组的形式,如果我们能处理出来从 [0, 0] 位置到 [i, j] 位置这⽚区域内所有元素的累加和,就可以在 O(1)
的时间内,搞定矩阵内任意区域内所有元素的累加和。因此我们 接下来仅需完成两步即可: 第⼀步:搞出来前缀和矩阵
这⾥就要⽤到⼀维数组⾥⾯的拓展知识,我们要在矩阵的最上⾯和最左边添加上⼀⾏和⼀列 0,这样我们就可以省去⾮常多的边界条件的处理。
这样,我们填写前缀和矩阵数组的时候,下标直接从 1 开始,能⼤胆使⽤ i - 1 , j - 1 位置的值。

注意 dp 表与原数组 matrix 内的元素的映射关系:
i. 从 dp 表到 matrix 矩阵,横纵坐标减⼀;
ii. 从 matrix 矩阵到 dp 表,横纵坐标加⼀。

前缀和矩阵中 sum[i][j] 的含义,以及如何递推⼆维前缀和⽅程

a. sum[i][j] 的含义:

sum[i][j] 表⽰,从 [0, 0] 位置到 [i, j] 位置这段区域内,所有元素的累加和。对应 下图的红⾊区域:

在这里插入图片描述

b. 递推⽅程: 其实这个递推⽅程⾮常像我们⼩学做过求图形⾯积的题,我们可以将 [0, 0] 位置到 [i, j]

位置这段区域分解成下⾯的部分:

在这里插入图片描述

sum[i][j] = 红 + 蓝 + 绿 + ⻩,分析⼀下这四块区域:

i. ⻩⾊部分最简单,它就是数组中的 matrix[i - 1][j - 1] (注意坐标的映射关系)

ii. 单独的蓝不好求,因为它不是我们定义的状态表⽰中的区域,同理,单独的绿也是;

iii. 但是如果是红 + 蓝,正好是我们 dp 数组中 sum[i - 1][j] 的值,美滋滋;

iv. 同理,如果是红 + 绿,正好是我们 dp 数组中 sum[i][j - 1] 的值;

v. 如果把上⾯求的三个值加起来,那就是⻩ + 红 + 蓝 + 红 + 绿,发现多算了⼀部分红的⾯积, 因此再单独减去红的⾯积即可;

vi. 红的⾯积正好也是符合 dp 数组的定义的,即 sum[i - 1][j - 1] 综上所述,我们的递推⽅程就是:

sum[i][j]=sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]+matrix[i- 1][j - 1]

第⼆步:使⽤前缀和矩阵

题⽬的接⼝中提供的参数是原始矩阵的下标,为了避免下标映射错误,这⾥直接先把下标映射成

dp 表⾥⾯对应的下标: row1++, col1++, row2++, col2++
接下来分析如何使⽤这个前缀和矩阵,如下图(注意这⾥的 row 和 col 都处理过了,对应的正 是 sum 矩阵中的下标):

在这里插入图片描述
对于左上⻆ (row1, col1) 、右下⻆ (row2, col2) 围成的区域,正好是红⾊的部分。因

此我们要求的就是红⾊部分的⾯积,继续分析⼏个区域:

i. ⻩⾊,能直接求出来,就是 sum[row1 - 1, col1 - 1] (为什么减⼀?因为要剔除 掉 row 这⼀⾏和 col
这⼀列)

ii. 绿⾊,直接求不好求,但是和⻩⾊拼起来,正好是 sum 表内 sum[row1 - 1][col2]的数据;

iii. 同理,蓝⾊不好求,但是 蓝 + ⻩ = sum[row2][col1 - 1] ;

iv. 再看看整个⾯积,好求嘛?⾮常好求,正好是 sum[row2][col2] ;

v. 那么,红⾊就 = 整个⾯积 - ⻩ - 绿 - 蓝,但是绿蓝不好求,我们可以这样减:整个⾯积 -(绿

  • ⻩ )-(蓝 + ⻩),这样相当于多减去了⼀个⻩,再加上即可 综上所述:红 = 整个⾯积 - (绿 + ⻩)- (蓝 + ⻩)+ ⻩,从⽽可得红⾊区域内的元素总和为:

sum[row2][col2] - sum[r ow2][col1 - 1] -sum[row1 - 1][col2] + sum[row1 -1][col1 - 1]

代码

import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息 

public class Main {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int n = in.nextInt();
 int m = in.nextInt();
 int q = in.nextInt();
 int[][] arr = new int[n + 1][m + 1];
 long[][] dp = new long[n + 1][m + 1];
 // 读⼊数据 
 for(int i = 1; i <= n; i++)
 for(int j = 1; j <= m; j++)
 arr[i][j] = in.nextInt();
 
 // 前缀和
 for(int i = 1; i <= n; i++)
 for(int j = 1; j <= m; j++)
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + 
arr[i][j];

 while(q > 0)
 {
 int x1 = in.nextInt(), y1 = in.nextInt(), x2 = in.nextInt(), y2 = 
in.nextInt();
 System.out.println(dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + 
dp[x1 - 1][y1 - 1]);
 q--;
 }
 }
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值