矩阵分析引论试卷

2018年矩阵论B考试题

一,填空题(每题3分,共30分)

1. 设为数域上的n维线性空间,且,若在基下的坐标为,则在基下的坐标为(  )

2. 设是次数不大于2的实数域上的多项式空间,定义内积,则的正交补空间(  )。

3. 设中线性变换在,下的矩阵为,线性变换在基,下的矩阵为,则在,下的矩阵为()

4.设按某种内积方式构成欧式空间,与是的两组基,且,,,,,,则内积在基下的矩阵是(  )。

5. 已知为一个单位列向量,令,且则( 1),(  )。

6. 矩阵的Jordan标准型(  )。

7. 已知, (为与同阶单位阵),则与相似的对角阵()。

8. 已知    )。

9. 设二阶方阵A的特征值为的特征值为(    )。

10. =    )。

二,计算(一)(共3道题,每小题10分,共30分)

1. 设中内积 定义为,,,若令,,,求(1)子空间的正交补空间;(2)利用 中的一组正交基。

答:(1)设是与都正交的向量,则有

,  它等价于 ,

解得

,       取,

那么子空间的正交补空间就是。

(2)显然就是中的一组基,将它们正交化得

(与都正交,所以必与正交),

综上,就是中的一组正交基。

2. 已知为三阶Hermite矩阵,二次型经酉变换得标准型,其中,且,求酉变换矩阵。

答:是正交向量,与正交的向量满足,解得,。

正交化,单位化,得,

故酉变换矩阵。

3. 求的奇异值分解。

答:的特征值是,

对应的特征向量依次是。

于是可得,令,

则,取,则,

所以的奇异值分解为。

三,计算(二)(共2道题,每小题15分,共30分)

已知. 已知,计算:

1;(2)令,求

答:(1 2

2. ,(1)求;(23)求

答:(1

   2时,,所以:

,所以:

3

四,证明题(共2道题,每小题5分,共10分)

1. 设阶矩阵,,其中为阶单位矩阵,试证明:。

证明:由于,,即:

又对于任意的,

,又由维数定理知。

2. 设,,定义,是中向量的1-范数,证明是中的向量范数,并说明分别与向量的2-范数、-范数等价。

证明:由已知显然,且当且仅当时,,;

  又,有

  ;

  ;

所以是中的向量范数。

若设,则

那么                   。

  又由中    ,,

可以得到     ,。

所以与向量的2-范数、-范数都等价。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值