【CINTA03】CINTA第三次作业

第六章 7.设G是群,对任意n N, i [0, n]gi G.证明g0g1 · · · gn 的逆元是gn^ 1 · · · g1 ^1 g0 ^1

证明:

假设证明为正确的,即g0g1 · · · gn 的逆元是gn^ 1 · · · g1 ^1 g0 ^1

因为,G是群,对任意n N, i [0, n]gi G

所以,g0g0^-1=e,g1g1^-1=e,......gngn^-1=e

则(g0g1··· gn )(gn^ 1··· g1 ^1 g0 ^1)=(g0g1···gn-1)(gngn^-1)(gn-1^-1···g1 ^1 g0 ^1)

                                                                     =e

则,假设符合群的定义,假设正确

g0g1 · · · gn 的逆元是gn^ 1 · · · g1 ^1 g0 ^1得证

第六章 8.证明:任意群 G 的两个子群的交集也是群 G 的子群

证明:

设H和K为G的两个子群

若任意a,b∈H∩K

则a∈H,b∈H

因为,H为子群

所以,ab∈H,a^-1∈H,b^-1∈H

同理可得,ab∈K,a^-1∈K,b^-1∈K

则ab∈H∩K,a^-1,b^-1∈H∩K

所以,H∩K是群 G 的子群

得证,任意群 G 的两个子群的交集也是群 G 的子群

第六章 9.证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群

证伪:

设群G的两个子集为2Z和3Z

取并集中的元素2,3

则2+3=5,此时,5不在并集中

则,不满足封闭性

则,任意群 G 的两个子群的并集也是群 G 的子群为伪命题

第六章 10.G 是阿贝尔群,H K G 的子群。请证明 HK = {hk : h H, k K} 是群 G

子群。如果 G 不是阿贝尔群,结论是否依然成立?

证明:

1)当G是阿贝尔群时

任意a,b∈HK

则,设a=h1k1,b=h2k2

则,h1,h2∈H,k1,k2∈K

因为,H,K是G的子群

所以,h1^-1,h2^-1,h1h2∈H,k1^-1,k2^-1,k1k2∈K

k3=k1k2∈K

h3=h1h2∈H

且G是阿贝尔群,k1,k2,h1,h2满足交换律

则,ab=h1k1h2k2=h1h2k1k2=h3k3∈HK

a^-1=h1^-1k1^-1∈HK

b^-1=h2^-1k2^-1∈HK

则,得证,HK = {hk : h H, k K} 是群 G 的 子群

2)当G不是阿贝尔群时

由1)中证明可得,此时k1,k2,h1,h2不满足交换律

则,ab=h1k1h2k2≠h1h2k1k2≠h3k3∉HK

则,任意a,b∈HK,没有ab∈HK

则,结论不能得证,HK = {hk : h H, k K} 不是群 G 的 子群

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值