【CINTA08】CINTA第八次作业

CINTA第八次作业

题1

1. 如果环 R 带乘法单位元 1 ,对任意 a ∈ R ,请证明 − a = ( − 1 ) a 。 1. 如果环 R 带乘法单位元 1,对任意 a ∈ R,请证明 −a = (−1)a。 1.如果环R带乘法单位元1,对任意aR,请证明a=(1)a

解: 环 R 带乘法单位元 1 , ∀ a ∈ R ,有 − a = 1 ⋅ ( − a ) 又 1 ( − a ) = ( − 1 ) a ,则 − a = ( − 1 ) a \begin{aligned} 解: &环 R 带乘法单位元 1, ∀a ∈ R,有-a=1\cdot(-a)\\ & 又\quad 1(-a)=(-1)a,则-a=(-1)a\end{aligned} 解:R带乘法单位元1,aR,有a=1a1a=1a,则a=1a

题2

2. 如果任取环 R 中的元素 x 都满足 x 2 = x 请证明环 R 是交换环。 2. 如果任取环 R 中的元素 x 都满足 x^2 = x请证明环 R 是交换环。 2.如果任取环R中的元素x都满足x2=x请证明环R是交换环。

解: ∀ x ∈ R , x 2 = x ,有 x 2 − x = 0 , x ( x − 1 ) = 0 , x = 0 ∣ ∣ x = 1 x = 1 的加法逆元不在 R 中,所以 a ≠ 1 所以,环 R 是平凡环 ∀ a , b ∈ R , a ⋅ b = 0 , a = 0 且 b = 0 , 环 R 是整环 ∀ a , b , c ∈ R , a ⋅ b = a ⋅ c , 则 a = b = c = 0 环 R 是交换环 \begin{aligned}解: &∀x ∈ R,\quad x^2 = x,有x^2-x=0,\quad x(x-1)=0,\quad x=0||x=1\\ &x=1的加法逆元不在R中,所以a\neq1\\&所以,环R是平凡环\\ &∀a,b ∈ R,a\cdot b=0,a=0且b=0,环R是整环\\ &∀a,b ,c∈ R,a\cdot b=a\cdot c,则a=b=c=0\\ &环R是交换环\end{aligned} 解:xR,x2=x,有x2x=0,x(x1)=0,x=0∣∣x=1x=1的加法逆元不在R中,所以a=1所以,环R是平凡环a,bR,ab=0a=0b=0,R是整环a,b,cRab=ac,a=b=c=0R是交换环

题3

3. 请解释为什么 Z n 在加法上的子群都是 Z n 的子环。 3. 请解释为什么\mathbb Zn 在加法上的子群都是 \mathbb Zn 的子环。 3.请解释为什么Zn在加法上的子群都是Zn的子环。

解: 任取 Z n 为 Z n 在加法上的子群, Z n ≠ ∅ ∀ a , b ∈ Z n , b 的加法逆元 − b ∈ Z n , 因为封闭性, a − b ∈ Z n ∀ a , b ∈ Z n , ∑ b a = a ⋅ b ∈ Z n 则, Z n 在加法上的子群都是 Z n 的子环 \begin{aligned}解:&任取Zn为\mathbb Zn 在加法上的子群,Zn\neq\emptyset\\ & ∀a,b ∈ Zn,\quad b的加法逆元-b∈ Zn,因为封闭性,a-b\in Zn\\ &∀a,b ∈ Zn,\overset{b}{\sum}a=a\cdot b\in Zn\\ &则,\mathbb Zn 在加法上的子群都是 \mathbb Zn 的子环\end{aligned} 解:任取ZnZn在加法上的子群,Zn=a,bZn,b的加法逆元bZn,因为封闭性,abZna,bZnba=abZn则,Zn在加法上的子群都是Zn的子环

题14

14. 证明环 2 Z 不与环 3 Z 同构。 14. 证明环 2\mathbb Z 不与环 3\mathbb Z 同构。 14.证明环2Z不与环3Z同构。

解: 假设 2 Z 与 3 Z 同构, 2 Z 、 3 Z 的加法单位元均为 0 , K e r ϕ = 0 ϕ : 2 Z → 3 Z ∀ a , b ∈ 2 Z , ψ ( a ⋅ b ) = ψ a ⋅ ψ b , ψ ( a + b ) = ψ a + ψ b , 令 a = b = 2 ψ 4 = ψ 2 ⋅ ψ 2 = ψ 2 + ψ 2 , ψ 2 ( ψ 2 − 2 ) = 0 , ψ 2 = 0 ∣ ∣ ψ 2 = 2 因为 2 Z 与 3 Z 同构,所以 ψ 2 = 2 , 2 ∉ 3 Z , 2 不能映射到 3 Z 上,与假设相矛盾 假设不成立,环 2 Z 不与环 3 Z 同构 \begin{aligned}解:&假设 2\mathbb Z 与 3\mathbb Z同构,2\mathbb Z、3\mathbb Z的加法单位元均为0,Ker\phi =0\\ &\phi: 2\mathbb Z \to 3\mathbb Z\\&∀a,b ∈2\mathbb Z,\psi(a\cdot b)=\psi a\cdot \psi b,\psi(a+b)=\psi a+\psi b ,令a=b=2\\ &\psi 4=\psi2\cdot \psi2=\psi2+\psi 2, \psi2(\psi2-2)=0,\psi2=0||\psi2=2\\ &因为2\mathbb Z 与 3\mathbb Z同构,所以\psi2=2,2\notin3\mathbb Z,2不能映射到3\mathbb Z上,与假设相矛盾\\ &假设不成立,环 2\mathbb Z 不与环 3\mathbb Z 同构 \end{aligned} 解:假设2Z3Z同构,2Z3Z的加法单位元均为0Kerϕ=0ϕ:2Z3Za,b2Zψ(ab)=ψaψb,ψ(a+b)=ψa+ψb,a=b=2ψ4=ψ2ψ2=ψ2+ψ2,ψ2(ψ22)=0,ψ2=0∣∣ψ2=2因为2Z3Z同构,所以ψ2=2,2/3Z,2不能映射到3Z上,与假设相矛盾假设不成立,环2Z不与环3Z同构

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值