【CINTA05】CINTA第五次作业

第九章

题5. 定义映射 ϕ : G | G 为: g | g ^ 2 。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。
证明如下:
充分性:
任意的 a, b G
⌀(a·b)=(a·b)^2=(a·b)(a·b)
⌀(a)⌀(b)=a^2b^2
⌀(a·b)=⌀(a)⌀(b)
则,(a·b)(a·b)=a^2b^2
所以,a、b满足交换律
G是阿贝尔群
必要性:
任意的 a, b G
⌀(a·b)=(a·b)^2=(a·b)(a·b)
因为G是阿贝尔群
所以,a、b满足交换律
则,⌀(a·b)=(a·b)^2=(a·b)(a·b)=a·a·b·b=a^2b^2=⌀(a)⌀(b)
所以,⌀  是一种群同态
题6. ϕ : G | H 是一种群同态。请证明:如果 G 是循环群,则 ϕ ( G ) 也是循环群;如
G 是交换群,则 ϕ ( G ) 也是交换群。
证明如下:
(1)
设  a 是   G的生成元
<a>={a^k|k ∈Z}
任意b G,则ϕ(b)=ϕ(a^k)=ϕ(a)^k
所以, ϕ(a)是ϕ(G)的生成元
所以,ϕ(G)是循环群
(2)
任意的 a, b G
⌀(a·b)=⌀(a)⌀(b),⌀(b·a)=⌀(b)⌀(a)
⌀(a·b)=⌀(b·a)
⌀(a)⌀(b)=⌀(b)⌀(a)
所以,⌀(G)也是交换群
题7. 证明:如果 H 是群 G 上指标为 2 的子群,则 H G 的正规子群。
证明如下:
H 是群 G 上指标为 2 的子群
所以,[G:H]=2,G被分成H、H'两部分
任意的 G
若a∉H,aH≠H,Ha≠H
G,H 是群 G 的子群,因为封闭性
aH=H',Ha=H'
aH=Ha
∈H
因为封闭性
aH=H,Ha=H
aH=Ha
所以,H 是 G 的正规子群
题8. 给定任意群 G H 是群 G 的正规子群。请证明,如果群 G 是阿贝尔群,则商群 G / H
也是阿贝尔群。
证明如下:
任意g1、g2G,则g1H、g2HG/ H
因为,群 G 是阿贝尔群
(g1H)(g2H)=g1Hg2H=(g2H)(g1H)
所以,商群 G /H 也是阿贝尔群
题9. 给定任意群 G H 是群 G 的正规子群。请证明,如果群 G 是循环群,则商群 G / H
也是循环群。
证明如下:
设g是G的生成元
<g>={g^k|k∈ Z}
任意a G,aH=g^k G / H
所以,gH是 G / H的生成元
所以,商群 G /H 也是循环群
  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值