【CINTA】CINTA第七次作业

【CINTA】CINTA第七次作业

题4

证明命题 11.4 设 p 是奇素数, a , b ∈ Z 且不被 p 整除。则有: 证明命题11.4\\ 设 p 是奇素数,a, b ∈ Z 且不被 p 整除。则有: 证明命题11.4p是奇素数,a,bZ且不被p整除。则有:
1. 如果 a ≡ b ( m o d p ) ,则 ( a p ) = ( b p ) 1.如果 a ≡ b (mod\quad p),则 \left(\frac{a}{p}\right) =\left( \frac{b}{p} \right) 1.如果ab(modp),则(pa)=(pb)
2. ( a p ) ( b p ) = ( a b p ) 2. \left(\frac{a}{p}\right) \left( \frac{b}{p}\right) =\left( \frac{ab}{p} \right) 2.(pa)(pb)=(pab)
3. ( a 2 p ) = 1 3.\left( \frac{a^2}{p} \right)=1 3.(pa2)=1

解 : 解: :

1. a ≡ b ( m o d p ) , b ≡ a ( m o d p ) 1. a ≡ b (mod\quad p),\quad b ≡ a (mod\quad p) 1.ab(modp),ba(modp)
a 是 p 的 Q R 且 b 是 p 的 Q R : \quad a是p的\boldsymbol{QR}且 b是p的\boldsymbol{QR}: apQRbpQR:
( a p ) = ( b p ) = 1 \left(\frac{a}{p}\right) =\left( \frac{b}{p} \right)=1 (pa)=(pb)=1
a 是 p 的 Q N R 且 b 是 p 的 Q N R \quad a是p的\boldsymbol{QNR}且b是p的\boldsymbol{QNR} apQNRbpQNR
( a p ) = ( b p ) = − 1 \left(\frac{a}{p}\right) =\left( \frac{b}{p} \right)=-1 (pa)=(pb)=1

2. 若 a 、 b 是 p 的 Q R ,由 Q R × Q R = Q R 知: a b = Q R 2. 若a、b是p的\boldsymbol{QR},由\boldsymbol{QR}\times \boldsymbol{QR}= \boldsymbol{QR}知:ab=\boldsymbol{QR} 2.abpQR,由QR×QR=QR知:ab=QR
( a p ) = 1 , ( b p ) = 1 , ( a b p ) = 1 , 所以, ( a p ) ( b p ) = ( a b p ) \left(\frac{a}{p}\right)=1, \left(\frac{b}{p}\right)=1, \left(\frac{ab}{p}\right)=1,所以, \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)= \left(\frac{ab}{p}\right) (pa)=1,(pb)=1,(pab)=1,所以,(pa)(pb)=(pab)
若 a 、 b 其中一个是 p 的 Q R ,由 Q R × Q N R = Q N R 知: a b = Q N R \quad若a、b其中一个是p的\boldsymbol{QR},由\boldsymbol{QR}\times \boldsymbol{QNR}= \boldsymbol{QNR}知:ab=\boldsymbol{QNR} ab其中一个是pQR,由QR×QNR=QNR知:ab=QNR
( a p ) = 1 , ( b p ) = − 1 或 ( a p ) = − 1 , ( b p ) = 1 , ( a b p ) = − 1 所以, ( a p ) ( b p ) = ( a b p ) \left(\frac{a}{p}\right)=1, \left(\frac{b}{p}\right)=-1或\left(\frac{a}{p}\right)=-1, \left(\frac{b}{p}\right)=1,\left(\frac{ab}{p}\right)=-1\\所以, \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)= \left(\frac{ab}{p}\right) (pa)=1,(pb)=1(pa)=1,(pb)=1,(pab)=1所以,(pa)(pb)=(pab)
若 a 、 b 是 p 的 Q N R ,由 Q N R × Q N R = Q R 知: a b = Q R \quad若a、b是p的\boldsymbol{QNR},由\boldsymbol{QNR}\times \boldsymbol{QNR}= \boldsymbol{QR}知:ab=\boldsymbol{QR} abpQNR,由QNR×QNR=QR知:ab=QR
( a p ) = − 1 , ( b p ) = − 1 , ( a b p ) = 1 所以, ( a p ) ( b p ) = ( a b p ) \left(\frac{a}{p}\right)=-1, \left(\frac{b}{p}\right)=-1,\left(\frac{ab}{p}\right)=1所以, \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)= \left(\frac{ab}{p}\right) (pa)=1,(pb)=1,(pab)=1所以,(pa)(pb)=(pab)
3. 若 a 是 p 的 Q N R , 参考 2 中第 1 、 3 种情况可知: 3. 若a是p的\boldsymbol{QNR},参考2中第1、3种情况可知: 3.apQNR,参考2中第13种情况可知:
( a b p ) = 1 \left(\frac{ab}{p}\right)=1 (pab)=1

题5

给出推论 11.1 的完整证明 设 p 是一个奇素数,则: 给出推论11.1的完整证明\\ 设 p 是一个奇素数,则: 给出推论11.1的完整证明p是一个奇素数,则:
\quad
( − 1 p ) \left(\frac{-1}{p}\right) (p1)= { 1 如果 p ≡ 1 ( m o d 4 ) − 1 如果 p ≡ − 1 ( m o d 4 ) \left\{ \begin{aligned} &1 \qquad如果p≡1\left(mod\quad4\right)\\ &-1\quad如果p≡-1\left(mod\quad4\right) \\ \end{aligned} \right. {1如果p1(mod4)1如果p1(mod4)

解: 解: 解:

p 是一个奇素数, g c d ( − 1 , p ) = 1 ,由欧拉准则可知: p是一个奇素数,gcd(-1,p)=1,由欧拉准则可知: p是一个奇素数,gcd1p=1,由欧拉准则可知: a ( p − 1 2 ) = ( − 1 p ) m o d p a^{\left(\frac{p-1}{2}\right)}=\left(\frac{-1}{p}\right)\quad mod\quad p a(2p1)=(p1)modp
1. p ≡ 1 ( m o d 4 ) , p = 4 n + 1 1.p≡1\left(mod\quad4\right),p=4n+1 1.p1(mod4),p=4n+1 a ( p − 1 2 ) = a 2 n = ( a n ) 2 = ( − 1 p ) m o d p a^{\left(\frac{p-1}{2}\right)}\quad =\quad a^{2n} \quad=\quad (a^n)^2\quad=\quad \left(\frac{-1}{p}\right) \quad mod \quad p a(2p1)=a2n=(an)2=(p1)modp
− 1 是 p 的 Q R , ( − 1 p ) = 1 2. p ≡ 1 ( m o d 4 ) , p = 4 n − 1 \quad-1是p的\boldsymbol{QR},\quad \left(\frac{-1}{p}\right) \quad=\quad 1\\ 2.p≡1\left(mod\quad4\right),p=4n-1 1pQR(p1)=12.p1(mod4)p=4n1 a ( p − 1 2 ) = a 2 n − 1 = ( − 1 p ) m o d p a^{\left(\frac{p-1}{2}\right)} \quad=\quad a^{2n-1} \quad=\quad \left(\frac{-1}{p}\right) \quad mod \quad p a(2p1)=a2n1=(p1)modp
− 1 是 p 的 Q N R , ( − 1 p ) = − 1 \quad-1是p的\boldsymbol{QNR},\quad \left(\frac{-1}{p}\right) \quad= \quad-1 1pQNR(p1)=1

题6

设 p 是奇素数,请证明 Z p ∗ 的所有生成元都是模 p 的二次非剩余 设 p 是奇素数,请证明 Z_p^*的所有生成元都是模 p 的二次非剩余 p是奇素数,请证明Zp的所有生成元都是模p的二次非剩余

解: 解: 解:

设任意 a 为 Z p ∗ 的生成元, g a c ( a , p ) = 1 假设 a 是 p 的 Q R ,则存在 X ,使得 : 设任意a为 Z_p^* 的生成元,gac(a,p)=1\\ 假设a是p的\boldsymbol{QR},则存在X,使得: 设任意aZp的生成元,gac(a,p)=1假设apQR,则存在X,使得:
a = X 2 ( m o d p ) , 又 a = a ( m o d p ) a=X^2\left(mod\quad p\right),又a=a\left(mod\quad p\right) a=X2(modp),a=a(modp)
a = X 2 , X 2 ∈ Z p ∗ , 由于群的封闭性, X ∈ Z p ∗ a 为 Z p ∗ 的生成元, X = a ( 1 2 ) , Z p 2 = < a > = { a k : k ∈ Z } , X 不属于 Z p ∗ 与 X ∈ Z p ∗ 矛盾,假设不成立 , 任意 a 为 Z p ∗ 的生成元 , a 是 p 的 Q N R , 得证 a=X^2,X^2∈Z_p^* ,由于群的封闭性,X∈Z_p^*\\a为 Z_p^* 的生成元,X=a^{\left(\frac{1}{2}\right)},Z _p^2 = <a> =\lbrace a^k :k∈Z\rbrace,X不属于Z_p^* \\与X∈Z_p^*矛盾,假设不成立,任意a为 Z_p^* 的生成元,a是p的\boldsymbol{QNR},得证 a=X2X2Zp,由于群的封闭性,XZpaZp的生成元,X=a(21)Zp2=<a>={ak:kZ},X不属于ZpXZp矛盾,假设不成立,任意aZp的生成元,apQNR,得证

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值