- 实验目的
- 学习使用游标卡尺和螺旋测微器测量单摆摆球的直径;
- 学习使用电子秒表,并记录单摆摆动5个周期的时间;
- 根据不确定度均分原理,设计单摆测量重力加速度g;
- 利用单摆测量重力加速度g。
二、实验原理
一、单摆的一级近似的周期公式为
由此通过测量周期T,摆长l求重力加速度。
二、不确定度均分原理
在间接测量中,每个独立测量的量的不确定度都会对最终结果的不确定度有贡献。如果已知各测量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。一般而言,这样做比较经济合理。对测量结果影响较大的物理量,应采用精度较高的仪器,而对测量结果影响不大的物理量,就不必追求高精度仪器。
三、实验仪器
游标卡尺,螺旋测微器,米尺,单摆仪,电子停表
四、实验内容
1、游标卡尺的使用
使用游标卡尺,测量5次单摆摆球的直径,记录数据。
2、螺旋测微计的使用
使用螺旋测微计,测量5次单摆摆球的直径,记录数据。
3、电子秒表的使用
使用电子秒表测量单摆摆动5个周期的时间,记录数据。
4、根据不确定度均分原理,设计单摆测量重力加速度g
(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.
(2)测量重力加速度g,测量精度要求△g/g < 1%.
可提供的器材及参数:
游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).
假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;
米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.
5、利用单摆测量重力加速度g
利用实验室提供的单摆仪,调整并确定合适的摆线长度,测量重力加速度
五、数据处理
(以下为内容例子)
- 数据记录
1、游标卡尺的使用
2、螺旋测微计的使用
3、电子秒表的使用
4、不确定度均分原理,设计单摆测量重力加速度g
5、利用单摆测量重力加速度g
(二)计算和数据处理
计算重力加速度g(m/s2)=(4Π2L)/(T2)=(4*3.142*0.9)/(95.91/50)2≈9.65m/s2
六、实验总结(提示:分析讨论和实验结论应分开写)
分析讨论:
- 测量单摆周期要测量几十次,而不是一次,为什么?
分析:因为测量一次误差太大,多次测量,可以减小误差。
- 摆长是哪两点间的距离?
分析:摆长指的是悬点到摆球球心的距离。
- 为什么计时应以摆球通过平衡位置开始计算?
分析:在平衡点开始计时更准确,在最高点误差太大。
实验总结:
本次实验进一步熟悉了螺旋测微器和游标卡尺的使用方法。学习了如何正确使用电子秒表。学会了如何用单摆测量重力加速度g。通过实验还得到以下结论:
- 单摆的周期T与摆长L之间呈反比例关系,即摆长越长,周期越长。
- 重力加速度的数值为9.65m/s2,与理论值9.8m/s2差值没有太大。