使用SpringAI快速实现离线本地大模型应用

前言

大模型(LLM),Large Language Model作为当前比较热门的技术,最近在年在各行各业中都得到了广泛的应用。

在我们目前使用较多的AI产品中,几乎都是使用的互联网(云端)上的AI工具,即:需要先把数据传输给AI平台,由AI平台处理后,再将信息回馈到我们的本地应用。

然而在许多领域,由于大模型的数据没有采集到更细化的信息,亦或者出于安全原因某些数据不能对外公开,这时使用离线大模型来实现信息生成与检索则变得非常重要。

很久没用Spring的我,最近看到Spring官网出了Spring AI这个框架,出于好奇体验了下感觉非常不错,在此写篇博文记录下。

本文重点为:如何快速从0到1搭建一个离线大模型,并使用SpringAI进行交互调用。

ollama介绍与安装

ollama作为一个工具(且开源),让大模型的安装与运行变得非常简单。
ollama

ollama支持多种操作系统,为了方便可以直接使用Docker运行。

下载命令一行搞定:

sudo docker pull ollama/ollama:latest

ollama上手

ollama下载好后,直接运行

#运行ollama,并指定挂载目录和映射端口
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
#进入ollama容器
docker exec -it ollama bash
#运行ollama命令pull一个大模型,这里拉取具有图像识别能力的minicpm-v
ollama pull minicpm-v

ollama支持的大模型非常多,如google的gemma、facebook的llama、阿里的qwen通通都有,按需所取。
模型仓库地址为:https://ollama.com/library

大模型下载好了后,就可以使用ollama run命令运行对应的模型,并可以进行命令行的文本交互

ollama run minicpm-v

ollama-run

open-webui安装

为了能获得更好的体验,可以使用开源的open-webui进行来访问离线大模型,UI界面和ChatGPT的非常像。

docker下拉取命令:

sudo docker pull ghcr.io/open-webui/open-webui:main

拉取好后直接运行:

docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main

这里笔者为了方便使用的是host网络,默认暴露的端口为8080,指定了webui存储数据的目录为/app/backend/data,并指定了ollama的后端地址为http://127.0.0.1:11434

基本功能体验

通过上面几行命令安装好了ollama与open-webui,之后就可以体验下离线大模型的常用功能了。

访问方式:直接访问open-webui的ip+port就行。
如我这里的docker物理机为_192.168.140.8_,则访问地址为http://192.168.140.8:8080

智能对话

首次访问open-webui需要先本地注册,随便填一个账号信息就行,并且首次注册的账号也是管理员账号。

由于我前面下载的大模型为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值