大家好,我是顾北,专注于 AI 应用探索与副业实践,长期关注 AI 技术趋势、实用工具以及 Github 线索探索。
Github 开源项目第五期推荐。2025.10.13-2025.10.19
本期分享我觉得对大家有用的 8 个开源项目(Daytona、RSSHub、Prompt-Engineering-Guide、n8n-mcp、fogsight、GPTs、PaddleOCR、Clone-Wars)
一、Daytona(24.1k ⭐)
介绍:Daytona是一款专门来运行AI生成代码的工具,提供安全的基础设施,并且它配备隔离的沙箱环境。
你可以将它想象成Docker,有时候AI生成的代码不安全,有可能侵入宿主机,而它提供的这个安全的沙箱环境可以完全避免这个问题,进而不会危及到你的宿主机。
链接:https://github.com/daytonaio/daytona

核心特性
-
闪电般快速的基础设施 :从代码到执行的 90 毫秒以下沙盒创建
-
分离和隔离的运行时 :执行 AI 生成的代码,对你的基础设施没有任何风险
-
程序控制 :文件、Git、LSP 和执行 API
-
无限持久性 :您的沙盒可以永远存在
-
OCI/Docker 兼容性 :使用任何 OCI/Docker 镜像创建沙盒
快速上手
选择你偏好的语言并安装 Daytona SDK:
Python:
pip install daytona
TypeScript:
npm install @daytonaio/sdk
开始使用
-
在 https://app.daytona.io 创建一个账户
-
生成 新的 API 密钥
可查看官方文档快速入门:https://www.daytona.io/docs/getting-started/
Python示例:
from daytona import Daytona, DaytonaConfig
daytona = Daytona(DaytonaConfig(api_key="YOUR_API_KEY"))
# 创建沙盒实例
sandbox = daytona.create()
# 在沙盒内安全运行代码
response = sandbox.process.code_run('print("Sum of 3 and 4 is " + str(3 + 4))')
if response.exit_code != 0:
print(f"Error running code: {response.exit_code}{response.result}")
else:
print(response.result)
# 清理沙盒
sandbox.delete()
运行命令:python main.py
TypeScript 示例:
import { Daytona } from'@daytonaio/sdk'
asyncfunctionmain() {
// 初始化 Daytona 客户端
const daytona = newDaytona({
apiKey: 'YOUR_API_KEY',
})
let sandbox;
try {
// 创建沙盒实例
sandbox = await daytona.create({
language: "python",
});
// 在沙盒内安全运行代码
const response = await sandbox.process.codeRun(
'print("Sum of 3 and 4 is " + str(3 + 4))'
);
if (response.exitCode !== 0) {
console.error("Error running code:", response.exitCode, response.result);
} else {
console.log(response.result);
}
} catch (error) {
console.error("Sandbox flow error:", error);
} finally {
// 清理沙盒
if (sandbox) {
await sandbox.delete();
}
}
}
main().catch(console.error)
运行命令:npx tsx ./index.ts
二、RSSHub(34.9k ⭐)
介绍:RSSHub 是一个开源、易用且可扩展的 RSS 源生成器,它具有将几乎所有网站转化为 RSS 源的能力。
它能将那些原本不支持 RSS 源的网站内容转化为标准的 RSS 源,它充当内容消费者和内容提供者之间的夹层。一句话总结就是万物皆可RSS,让你在信息过载的时代,更优雅的聚焦在你所关心的内容上。
链接:https://github.com/DIYgod/RSSHub

快速上手
前提条件
你电脑环境已经成功安装了 Docker 和 Docker Compose 或者安装了 Node.js 22.0.0 及以上的版本
最快上手方式是使用 Docker Compose:
-
创建一个名为
docker-compose.yml的文件
services:
rsshub:
image:diygod/rsshub
restart:always
ports:
-"1200:1200"
environment:
NODE_ENV:production
CACHE_TYPE:memory
-
启动 RSSHub
在创建docker-compose.yml文件的目录中,运行:
docker-compose up -d
-
访问网页界面:http://127.0.0.1:1200
完成上面步骤,你的 RSSHub 实例就已经运行了!
三、Prompt-Engineering-Guide(64.4k ⭐)
介绍:Prompt-Engineering-Guide 中汇总了有关提示工程、上下文工程、RAG 和 AI 代理的指南、论文、课程、笔记本和资源。无论你是构建 AI 应用,还是单纯的对 LLM 的能力感到好奇,它绝对是你的不二选择,该指南可以为你提供有效入门所需的基础知识和实用技能。
链接:https://github.com/dair-ai/Prompt-Engineering-Guide

快速上手
你可以通过这份官方教程来快速上手使用,访问下面链接,来学习提示词如何写,怎么构建更优美的提示词.
官方链接:https://www.promptingguide.ai/zh
四、n8n-mcp(8.9k ⭐)
介绍:n8n-mcp 是一个 Model Context Protocol (MCP) 服务器。它可以为你的 AI 助手提供对 n8n 工作流自动化能力的全面访问,包括但不限于以下AI工具:Claude Desktop / Claude Code / Windsurf / Cursor 。
链接:https://github.com/czlonkowski/n8n-mcp

核心特性
全节点覆盖
-
536 个 n8n 节点,来自
n8n-nodes-base和@n8n/n8n-nodes-langchain -
99% 的属性覆盖,包含详细模式和验证规则
-
63.6% 的操作覆盖,涵盖可用节点操作
-
90% 的文档覆盖,来自官方 n8n 来源
AI 优化特性
-
检测并完整记录 263 个 AI 兼容节点
-
从流行工作流模板中预提取 2,646 个配置
-
2500+ 工作流模板,支持智能过滤和搜索
-
智能属性过滤,在常见用例中将响应大小减少 95%
快速上手
前置条件:你系统已经安装了 Node.js
# 直接使用 npx 运行(无需安装!)
npx n8n-mcp
添加到 Claude 桌面配置:
基本配置(仅限文档工具):
{
"mcpServers":{
"n8n-mcp":{
"command":"npx",
"args":["n8n-mcp"],
"env":{
"MCP_MODE":"stdio",
"LOG_LEVEL":"error",
"DISABLE_CONSOLE_OUTPUT":"true"
}
}
}
}
完整配置(使用 n8n 管理工具):
{
"mcpServers":{
"n8n-mcp":{
"command":"npx",
"args":["n8n-mcp"],
"env":{
"MCP_MODE":"stdio",
"LOG_LEVEL":"error",
"DISABLE_CONSOLE_OUTPUT":"true",
"N8N_API_URL":"https://your-n8n-instance.com",
"N8N_API_KEY":"your-api-key"
}
}
}
}
注意 :npx 将自动下载并运行最新版本。该软件包包含一个预先构建的数据库,其中包含所有 n8n 节点信息。
同样的,基于上面这个配置信息,你可以将它复制到你对应的 Claude Code CLI 的配置 .claude.json 文件中,进行MCP配置
五、fogsight(1.2k ⭐)
介绍:Fogsight 是一个由大型语言模型驱动的 AI 代理和动画引擎,用户输入抽象概念或词语,它会将其转化为高水平的生动动画。一句话总结就是一个AI生成动画的一个Agent
链接:https://github.com/fogsightai/fogsight

核心特性
-
概念即影像: 输入一个主题,Fogsight 将为您生成一部叙事完整的高水平动画,包含双语旁白与电影级的视觉质感。
-
智能编排: Fogsight 的核心是其强大的LLM驱动的编排能力。从旁白、视觉元素到动态效果,AI 将自动完成整个创作流程,一气呵成。
-
语言用户界面 (LUI): 通过与 AI 的多轮对话,你可以对动画进行精准调优和迭代,直至达到你心中最理想的艺术效果。
快速上手
方式A:本地部署
环境要求:
-
Python 3.9+
-
一个现代网络浏览器 (如 Chrome, Firefox, Edge)
-
大语言模型的 API 密钥。推荐使用 Google Gemini 2.5。
安装与运行
-
克隆代码仓库:
git clone https://github.com/fogsightai/fogsight.git
cd fogsight
-
安装依赖:
pip install -r requirements.txt
-
配置 API 密钥
cp demo-credentials.json credentials.json
# 复制 demo-credentials.json 文件并重命名为 credentials.json
# 编辑 credentials.json 文件,填入您的 API_KEY 和 BASE_URL。
# **请注意**,我们使用的是与 OpenAI 兼容的 SDK,但您仍应使用Gemini 2.5 pro
-
一键启动
python start_fogsight.py
# 运行 start_fogsight.py 脚本
# 它将自动启动后端服务并在浏览器中自动打开 http://127.0.0.1:8000
方式B:访问官方网站使用
你可以直接访问网站 fogsight.ai 直接使用,免部署在线生成动画
官方网址:https://fogsight.ai/
使用案例


六、GPTs(31.1k ⭐)
介绍:GPTs 是一个全面收录 OpenAI 自定义 GPT 模型泄露提示词的资源库,仓库包含超过 300 个独特的 GPT 提示词,涵盖多个领域和用例
链接:https://github.com/linexjlin/GPTs

访问GitHub对应的仓库,看 README.md 文件即可
七、PaddleOCR(58.5k ⭐)
介绍:PaddleOCR是一款将任何 PDF 或图像文档转换为 AI 所需的结构化数据。这是一款功能强大、轻量级的 OCR 工具包,可连接图像/PDF 和 LLM 之间的数据。支持 100 多种语言,有网友称它可是OCR开源项目的天花板。
链接:https://github.com/PaddlePaddle/PaddleOCR

3.0 核心功能
-
PaddleOCR-VL - 通过 0.9B VLM 进行多语言文档解析
-
专为文档解析量身定制的 SOTA 和资源高效模型 ,支持 109 种语言,擅长识别复杂元素(例如文本、表格、公式和图表),同时保持最少的资源消耗
-
-
PP-OCRv5 — 通用场景文本识别
-
单一模型支持五种文本类型 (简体中文、繁体中文、英文、日文、拼音) ,准确率提升 13% ,解决多语言混合文档识别难题。
-
-
PP-StructureV3 — 复杂文档解析
-
智能地将复杂的 PDF 和文档图片转换为保留原始结构的 Markdown 和 JSON 文件 。在公开基准测试中, 其表现优于众多商业解决方案。 完美保留文档布局和层级结构 。
-
-
PP-ChatOCRv4 — 智能信息提取
-
原生集成 ERNIE 4.5, 精准提取海量文档中的关键信息 ,准确率较上一代提升 15%。让文档“ 理解 ”你的问题,并提供精准的答案。
-
快速上手
使用 pip 及可选依赖是开始使用 PaddleOCR 的最快方式:
python -m pip install "paddleocr[all]"
# 仅安装基本 OCR 功能
python -m pip install paddleocr
# 安装文档解析功能
python -m pip install "paddleocr[doc-parser]"
# 安装信息提取功能
python -m pip install "paddleocr[ie]"
# 安装文档翻译功能
python -m pip install "paddleocr[trans]"
验证安装是否成功
安装完成后,使用以下简单测试验证你的设置:
from paddleocr import PaddleOCR
# 初始化 PaddleOCR
ocr = PaddleOCR(use_doc_orientation_classify=False, use_doc_unwarping=False)
# 使用示例图片测试
result = ocr.ocr("path_to_your_image.jpg")
print(result)
八、Clone-Wars(31.7k ⭐)
介绍:Clone-Wars 收录了 100+ 热门网站的开源克隆,如 Airbnb、Amazon、Instagram、Netflix、Tiktok、Spotify、Whatsapp、Youtube 等。查看源代码、演示链接、技术堆栈、github 星标。
链接:https://github.com/GorvGoyl/Clone-Wars

核心特性
-
基于教程的克隆项目:来自 freeCodeCamp 和 YouTube 等平台的全栈实现项目,配有完整教程
-
生产环境替代方案:热门商业软件的全功能开源替代品
-
技术多样性:涵盖 React、Vue、Angular、Flutter 及多种后端技术的跨技术栈项目
快速开始
-
选择你的平台:浏览主仓库中的表格,找到你感兴趣克隆的平台
-
检查教程可用性:如果需要指导,请查找带有教程链接的项目
-
查看技术栈:确保你熟悉所使用的技术或愿意学习它们
-
访问资源:点击演示链接查看最终结果,点击仓库链接访问源代码
-
开始构建:跟随教程或研究代码库以理解实现模式
最后
到这里分享就到此结束了,这些信息获取自:
GitHub官方网站:https://github.com/
Zread 项目解读网站:https://zread.ai/
如果想要了解 zread 是什么,怎么使用,可以看看我下面这篇文章,里面有详细讲解
我把公司的“祖传屎山”代码喂给AI,结果它比写代码的“亲爹”还懂!
以上就是本次分享的内容,如果大家觉得有用,希望一键三连,制作不易,谢谢大家!
787

被折叠的 条评论
为什么被折叠?



