前言
二叉树的递归确实很有难度,很难理解,但毕竟是一刷,先理解思路,实在不行把代码背下来,慢慢理解
Leetcode 222 完全二叉树的节点个数
题目链接:222. 完全二叉树的节点个数 - 力扣(LeetCode)
代码随想录题解:代码随想录 (programmercarl.com)
思路:这个题还挺简单的,后序遍历,先遍历左右节点计数,然后返回给根节点就行了。
代码:
class Solution {
public:
int countNodes(TreeNode* root) {
if(root==NULL)//递归终止条件
{
return 0;
}
int leftcount=countNodes(root->left);//左
int rightcount=countNodes(root->right);//右
int count=leftcount+rightcount+1;//中
return count;
}
};
Leetcode 110 平衡二叉树
题目链接:110. 平衡二叉树 - 力扣(LeetCode)
代码随想录题解:代码随想录 (programmercarl.com)
思路:对求高度进行一些补充,需要判断当前高度的差值是否大于一,以及左右子树是否已经不平衡。
代码:
class Solution {
public:
int getheigh(TreeNode* root)
{
if(root==NULL)//循环终止条件
{
return 0;
}
int leftheigh=getheigh(root->left);//左子树
if(leftheigh==-1)//左子树不平衡
{
return -1;
}
int rightheigh=getheigh(root->right);
if(rightheigh==-1)//右子树不平衡
{
return -1;
}
if(abs(leftheigh-rightheigh)>1)//左右子树都平衡但高度差大于1
{
return -1;
}
else
{
return 1+max(leftheigh,rightheigh);
}
}
bool isBalanced(TreeNode* root) {
return getheigh(root)==-1?false:true;
}
};
Leetcode 157 二叉树的所有路径
题目链接:257. 二叉树的所有路径 - 力扣(LeetCode)
代码随想录题解:代码随想录 (programmercarl.com)
思路:回溯算法,感觉也是深度优先遍历。运行过程很简单,但写出来代码有点难度。
代码:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
// 这才到了叶子节点
if (cur->left == NULL && cur->right == NULL) {
string sPath;
for (int i = 0; i < path.size() - 1; i++) {
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size() - 1]);
result.push_back(sPath);
return;
}
if (cur->left) { // 左
traversal(cur->left, path, result);
path.pop_back(); // 回溯
}
if (cur->right) { // 右
traversal(cur->right, path, result);
path.pop_back(); // 回溯
}
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
if (root == NULL) return result;
traversal(root, path, result);
return result;
}
};
Leetcode 404 左叶子之和
题目链接:404. 左叶子之和 - 力扣(LeetCode)
代码随想录题解:代码随想录 (programmercarl.com)
思路:找到所有左叶子然后求和。
代码:
class Solution {
public:
int sumOfLeftLeaves(TreeNode* root) {
if(root==NULL)
{
return 0;
}
if(root->left==NULL&&root->right==NULL)
{
return 0;
}
int leftValue = sumOfLeftLeaves(root->left); // 左
if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right); // 右
int sum = leftValue + rightValue; // 中
return sum;
}
};
总结
二叉树的各种递归很难理解,在尝试理解了,但还是不太能理解。慢慢来吧