大数定律及中心极限定理

本文概述了概率论中的几大重要定理,包括弱大数定理(辛钦大数定理)、伯努利大数定理、切比雪夫大数定理以及中心极限定理,重点介绍了随机变量在独立同分布和标准化条件下的性质。最后提到了李雅普诺夫定理,它涉及随机变量和极限分布的关系。
摘要由CSDN通过智能技术生成

目录

弱大数定理(辛钦大数定理)

伯努利大数定理

切比雪夫大数定理

中心极限定理

定理一(独立同分布)

定理二(李雅普诺夫定理)


弱大数定理(辛钦大数定理)

随机变量 X_1, X_2, X_3, ... 

  1. 相互独立
  2. 同分布
  3. 具有相同的数学期望 E(X_k) = \mu 

         \bar{X} \overset{P}{\rightarrow} \mu

伯努利大数定理

f_A 是 n 次重复实验事件A发生的次数

则 \frac{f_A}{n} \overset{P}{\rightarrow}p

切比雪夫大数定理

随机变量 X_1, X_2, X_3,... 有

  1. E(X_k) = \mu
  2. D(X_k) \leq m

则 \bar{X} \overset{P}{\rightarrow} \mu

中心极限定理

定理一(独立同分布)

随机变量X_1,X_2,X_3,...

  1. 相互独立
  2. 服从同一分布
  3. E(X_k) = \mu
  4. D(X_k) = \sigma^2 >0

\sum_{i=1}^{n}X_k   的标准化变量  \frac{\sum_{i =1}^{n} X_k - n\mu}{\sqrt{n}\sigma}\sim N(0,1)   (近似的)

或者

        \bar{X} \sim N(\mu, \sigma^2 / n) (近似的)

定理二(李雅普诺夫定理)

满足:

  1. E(X_k) = \mu
  2. D(X_k) = \sigma^2 >0
  3. 记 B^2_n = \sum^{n}_{k = 1} \sigma ^2_k

若存在 \delta 使得 当 n \rightarrow \infty 时,

\frac{1}{B^{2+\delta}_n} \sum^{n}_{k=1} E\{ \left | X_k - \mu_k \right |^{2+\delta}\} \rightarrow 0

随机变量的和 \sum^{n}_{k=1} X_k 经过标准化之后,服从标准正态分布

对该定理的理解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值