【机器学习】(9) --逻辑回归实现手写数字识别

逻辑回归

逻辑回归(Logistic Regression)虽然是一种广泛使用的分类算法,但它通常更适用于二分类问题。然而,通过一些策略(如一对多分类,也称为OvR或One-vs-Rest),逻辑回归也可以被扩展到多分类问题,如手写数字识别(通常是0到9的10个类别)。

本篇我们就来尝试一下如何通过逻辑回归来实现手写数字识别

  1. 训练模型
  2. 测试模型

实现手写数字识别

训练模型

  1. 收集数据

在这里插入图片描述

  1. 读取图片

使用opencv处理图片,将图片的像素数值读取进来,并返回的是一个三维(高,宽,颜色)numpy数组:

 pip install opencv-python==3.4.11.45
import cv2
img = cv2.imread("digits.png")
  1. 转为灰度图

将图片转化为灰度图,从而让三维数组变成二位的数组:

grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  1. 处理图片信息

对图片进行处理:将其先垂直切分(横向)成50份,再将每一份水平切分(竖向)成100份,这样我们的每份图片的像素值都为20*20(训练的图片比较规范)共500个,比如:

在这里插入图片描述

import numpy as np
img_info = [np.hsplit(row,100) for row in np.vsplit(grey,50)]
  1. 装进array数组

将切分的每一份图片像素数据都装进array数组中:

x = np.array(img_info)
  1. 分隔训练集与测试集

将数据竖着分隔一半,一半作为训练集,一般作为测试集:

train_x = x[:,:50]
test_x = x[:,50:100]
  1. 调整数据结构

由于我们最后要将数据放在逻辑回归模型中训练,我们得将数据结构调整为适合逻辑回归算法训练的结构,那么我们就来改变每份图片数组的维度:reshape:

new_train_x = train_x.reshape(-1,400).astype(np.float32)
new_test_x = test_x.reshape(-1,400).astype(np.float32)
  1. Z-score标准化

逻辑回归算法进行手写数字识别时,对数据进行标准化是为了提高优化算法的收敛速度、提升模型的预测性能,并避免潜在的数值问题。将数据都进行表示话,避免参数的影响:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
fin_train = scaler.fit_transform(new_train_x)
fin_test = scaler.fit_transform(new_test_x)
  1. 分配标签

我们训练着那么多的数据,却没有给他们具体的类别标签(图像的实际值),因为我们之前的图像处理都是在寻找图像特征,但是并没有给他们一个具体对应的类别,只有空荡荡的特征,无法分类,所以我们得给切分的每份图片打上它们对应的标签:

k = np.arange(10)
train_y = np.repeat(k,250)
test_y = np.repeat(k,250)
train_y = train_y.ravel()
  1. 交叉验证

在逻辑回归的算法中,逻辑模型的参数中,有一参数为正则化强度C,越小的数值表示越强的正则化。我们要进行调参数,看看哪个惩罚因子最为合适,使模型拟合效果更好:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score

#交叉验证选择较优的惩罚因子
scores = []
c_param_range = [0.01,0.1,1,10,100] #参数:一般常用的惩罚因子

for i in c_param_range:
    lr = LogisticRegression(C = i,penalty='l2',solver='lbfgs',max_iter=1000,random_state=0)
    # C表示正则化强度,越小的数值表示越强的正则化。防止过拟合
        score = cross_val_score(lr,fin_train,train_y,cv=10,scoring='recall_macro')
    #交叉验证,将模型和数据集传入,对其进行划分,每份轮流作为测试集来测试模型。返回一个列表对象
    score_mean = sum(score)/len(score)
    scores.append(score_mean)
c_choose = c_parma[np.argmax(scores)] #argmax取出最大值的索引位置
  1. 训练模型
lr_model = LogisticRegression(C = c_choose,max_iter=1000,random_state=0)
lr_model.fit(fin_train,train_y)

测试模型

  1. 先用训练数据再次进入模型测试,查看他本身的模型训练效果怎么样:
from sklearn import metrics
train_predict = lr_model.predict(fin_train)
print(metrics.classification_report(train_y,train_predict))  #查看混淆矩阵
-------------------------------
              precision    recall  f1-score   support

           0       0.99      1.00      0.99       250
           1       0.98      1.00      0.99       250
           2       1.00      0.98      0.99       250
           3       0.98      0.98      0.98       250
           4       1.00      1.00      1.00       250
           5       0.98      0.98      0.98       250
           6       0.99      1.00      1.00       250
           7       0.98      0.99      0.98       250
           8       0.98      0.99      0.99       250
           9       0.99      0.97      0.98       250

    accuracy                           0.99      2500
   macro avg       0.99      0.99      0.99      2500
weighted avg       0.99      0.99      0.99      2500
  1. 再用分割的测试集来测试模型:
test_predict = lr_model.predict(fin_test)
print(metrics.classification_report(test_y,test_predict))
---------------------------
              precision    recall  f1-score   support

           0       0.95      0.96      0.95       250
           1       0.94      0.96      0.95       250
           2       0.88      0.86      0.87       250
           3       0.90      0.86      0.88       250
           4       0.92      0.84      0.88       250
           5       0.84      0.90      0.87       250
           6       0.92      0.95      0.93       250
           7       0.89      0.93      0.91       250
           8       0.89      0.84      0.86       250
           9       0.83      0.86      0.85       250

    accuracy                           0.90      2500
   macro avg       0.90      0.90      0.89      2500
weighted avg       0.90      0.90      0.89      2500

到这为止!!我们就训练好一个关于手写数字识别的逻辑回归模型啦!!

总结

本篇介绍了如何用逻辑回归算法实现手写数字识别:

  1. 逻辑回归更适合二分类算法,但是也可以通过一些策略,扩展到多分类问题。
  2. 注意要将读取的数据进行标准化操作,灰度图图片数据相差过大。
  3. 学会调整参数,优化模型,比如本篇在交叉验证中找寻最优的惩罚因子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值