leetcode练习 最长有效括号

给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号

子串

的长度。

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"

示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"

示例 3:

输入:s = ""
输出:0

提示:

  • 0 <= s.length <= 3 * 104
  • s[i] 为 '(' 或 ')'

思路:本题可以使用动态规划来解决,我们首先使用栈判断括号是否匹配:

条件为:遍历字符串,当字符为"("时,入栈,当为")"时判断栈是否为空,如果为空的话,说明这个位置不匹配,该位置的长度一定为0,dp[i+1]=0。如果栈不为空的话,那么将栈顶出栈,现在这个右括号的长度为栈顶元素的dp[j]+i-j+1(但是一般来说,dp[j]应该都是0吧,中间是断的不可能再加)

编写代码时考虑过使用dp[i]=dp[j-1]+i-j+1,同时判断字符串长度是否为0,但代码会报错:

runtime error: index -1 out of bounds for type 'int[30001]' (solution.cpp)

未能找到别的解决办法,遂改为+1.

class Solution {
public:
    int longestValidParentheses(string s) {
        stack<int>st;
        int n=s.size();
        int dp[30001]={0};
        int max_len=0;
        for(int i=0;i<n;i++)
        {

            if(s[i]=='(')
            {
                st.push(i);
                dp[i+1]=0;
            }
            else
            {
                if(st.empty())
                {
                    dp[i+1]=0;

                }
                else
                {
                    int j=st.top();
                    st.pop();
                     dp[i+1]=dp[j]+i-j+1;
                }
            }
        }
        for(int i=0;i<n+1;i++)
        {
            if(dp[i]>max_len)
            {
                max_len=dp[i];
            }
        }
        return max_len;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值