给你一个只包含 '('
和 ')'
的字符串,找出最长有效(格式正确且连续)括号
子串
的长度。
示例 1:
输入:s = "(()" 输出:2 解释:最长有效括号子串是 "()"
示例 2:
输入:s = ")()())" 输出:4 解释:最长有效括号子串是 "()()"
示例 3:
输入:s = "" 输出:0
提示:
0 <= s.length <= 3 * 104
s[i]
为'('
或')'
思路:本题可以使用动态规划来解决,我们首先使用栈判断括号是否匹配:
条件为:遍历字符串,当字符为"("时,入栈,当为")"时判断栈是否为空,如果为空的话,说明这个位置不匹配,该位置的长度一定为0,dp[i+1]=0。如果栈不为空的话,那么将栈顶出栈,现在这个右括号的长度为栈顶元素的dp[j]+i-j+1(但是一般来说,dp[j]应该都是0吧,中间是断的不可能再加)
编写代码时考虑过使用dp[i]=dp[j-1]+i-j+1,同时判断字符串长度是否为0,但代码会报错:
runtime error: index -1 out of bounds for type 'int[30001]' (solution.cpp)
未能找到别的解决办法,遂改为+1.
class Solution {
public:
int longestValidParentheses(string s) {
stack<int>st;
int n=s.size();
int dp[30001]={0};
int max_len=0;
for(int i=0;i<n;i++)
{
if(s[i]=='(')
{
st.push(i);
dp[i+1]=0;
}
else
{
if(st.empty())
{
dp[i+1]=0;
}
else
{
int j=st.top();
st.pop();
dp[i+1]=dp[j]+i-j+1;
}
}
}
for(int i=0;i<n+1;i++)
{
if(dp[i]>max_len)
{
max_len=dp[i];
}
}
return max_len;
}
};