深度卷积对抗生成网络(DCGAN)matlab实战

 一、原理

深度卷积对抗生成网络 (DCGAN)将GAN与CNN相结合,奠定后几乎所有GAN的基本网络架构。DCGAN极大地提升了原始GAN训练的稳定性以及生成结果质量。

DCGAN网络设计中采用了当时对CNN比较流行的改进方案:

1、将空间池化层用卷积层替代,这种替代只需要将卷积的步长stride设置为大于1的数值。改进的意义是下采样过程不再是固定的抛弃某些位置的像素值,而是可以让网络自己去学习下采样方式。

2、将全连接层去除

3、采用BN层,BN的全称是Batch Normalization,是一种用于常用于卷积层后面的归一化方法,起到帮助网络的收敛等作用。作者实验中发现对所有的层都使用BN会造成采样的震荡(我也不理解什么是采样的震荡,我猜是生成图像趋于同样的模式或者生成图像质量忽高忽低)和网络不稳定。

4、在生成器中除输出层使用Tanh(Sigmoid)激活函数,其余层全部使用ReLu激活函数。

5、在判别器所有层都使用LeakyReLU激活函数,防止梯度稀。

下面是DCGAN的生成器网络架构图。

 二、代码实战

clear all; close all; clc;
%% Deep Convolutional Generative Adversarial Network
%% Load Data
load('mnistAll.mat')
trainX = preprocess(mnist.train_images); 
trainY = mnist.train_labels;
testX = preprocess(mnist.test_images); 
testY = mnist.test_labels;
%% Settings
settings.latentDim = 100;
settings.batch_size = 32; settings.image_size = [28,28,1]; 
settings.lrD = 0.0002; settings.lrG = 0.0002; settings.beta1 = 0.5;
settings.beta2 = 0.999; settings.maxepochs = 50;
%% Generator
paramsGen.FCW1 = dlarray(initializeGaussian([128*7*7,...
    settings.latentDim]));
paramsGen.FCb1 = dlarray(zeros(128*7*7,1,'single'));
paramsGen.TCW1 = dlarray(initializeGaussian([3,3,128,128]));
paramsGen.TCb1 = dlarray(zeros(128,1,'single'));
paramsGen.BNo1 = dlarray(zeros(128,1,'single'));
paramsGen.BNs1 = dlarray(ones(128,1,'single'));
paramsGen.TCW2 = dlarray(initializeGaussian([3,3,64,128]));
paramsGen.TCb2 = dlarray(zeros(64,1,'single'));
paramsGen.BNo2 = dlarray(zeros(64,1,'single'));
paramsGen.BNs2 = dlarray(ones(64,1,'single'));
paramsGen.CNW1 = dlarray(initializeGaussian([3,3,64,1]));
paramsGen.CNb1 = dlarray(zeros(1,1,'single'));
stGen.BN1 = []; stGen.BN2 = [];

%% Discriminator
paramsDis.CNW1 = dlarray(initializeGaussian([3,3,1,32]));
paramsDis.CNb1 = dlarray(zeros(32,1,'single'));
paramsDis.CNW2 = dlarray(initializeGaussian([3,3,32,64]));
paramsDis.CNb2 = dlarray(zeros(64,1,'single'));
paramsDis.BNo1 = dlarray(zeros(64,1,'single'));
paramsDis.BNs1 = dlarray(ones(64,1,'single'));
paramsDis.CNW3 = dlarray(initializeGaussian([3,3,64,128]));
paramsDis.CNb3 = dlarray(zeros(128,1,'single'));
paramsDis.BNo2 = dlarray(zeros(128,1,'single'));
paramsDis.BNs2 = dlarray(ones(128,1,'single'));
paramsDis.CNW4 = dlarray(initializeGaussian([3,3,128,256]));
paramsDis.CNb4 = dlarray(zeros(256,1,'single'));
paramsDis.BNo3 = dlarray(zeros(256,1,'single'));
paramsDis.BNs3 = dlarray(ones(256,1,'single'));
paramsDis.FCW1 = dlarray(initializeGaussian([1,256*4*4]));
paramsDis.FCb1 = dlarray(zeros(1,1,'single'));
stDis.BN1 = []; stDis.BN2 = []; stDis.BN3 = [];

% average Gradient and average Gradient squared holders
avgG.Dis = []; avgGS.Dis = []; avgG.Gen = []; avgGS.Gen = [];
%% Train
numIterations = floor(size(trainX,4)/settings.batch_size);
out = false; epoch = 0; global_iter = 0;


%% modelGradients
function [GradGen,GradDis,stGen,stDis]=modelGradients(x,z,paramsGen,...
    paramsDis,stGen,stDis)
[fake_images,stGen] = Generator(z,paramsGen,stGen);
d_output_real = Discriminator(x,paramsDis,stDis);
[d_output_fake,stDis] = Discriminator(fake_images,paramsDis,stDis);

% Loss due to true or not
d_loss = -mean(.9*log(d_output_real+eps)+log(1-d_output_fake+eps));
g_loss = -mean(log(d_output_fake+eps));

% For each network, calculate the gradients with respect to the loss.
GradGen = dlgradient(g_loss,paramsGen,'RetainData',true);
GradDis = dlgradient(d_loss,paramsDis);
end
%% progressplot
function progressplot(paramsGen,stGen,settings)
r = 5; c = 5;
noise = gpdl(randn([settings.latentDim,r*c]),'CB');
gen_imgs = Generator(noise,paramsGen,stGen);
gen_imgs = reshape(gen_imgs,28,28,[]);

fig = gcf;
if ~isempty(fig.Children)
    delete(fig.Children)
end

I = imtile(gatext(gen_imgs));
I = rescale(I);
imagesc(I)
title("Generated Images")
colormap gray

drawnow;
end
%% dropout
function dly = dropout(dlx,p)
if nargin < 2
    p = .3;

实验结果

epoch = 5;

epoch = 6

 

 

 

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化
对抗生成神经网络GAN)是一种深度学习模型,用于生成类似于训练数据的新数据。GAN由两个神经网络组成:生成器和判别器。生成器尝试生成假数据,而判别器尝试区分真实数据和生成数据。两个网络同时进行训练,以提高它们的性能。 在MATLAB中,可以使用深度学习工具箱来实现GAN。首先,需要定义生成器和判别器的网络结构,并训练它们以改进它们的性能。可以使用内置的深度学习模型或自定义模型来构建这些网络。 一旦训练完成,可以使用生成器来生成新的数据。可以使用GAN生成各种类型的数据,如图像、音频和文本。GAN是一种强大的工具,可以用于各种应用,例如图像修复、图像合成和数据增强等。 下面是一个使用MATLAB实现GAN的示例代码: ```matlab % Load data load('mnist.mat'); % Define generator network generator = [ imageInputLayer([100 1 1], 'Normalization', 'none') transposedConv2dLayer(4, 4, 512, 'Name', 'tconv1') batchNormalizationLayer('Name', 'bn1') reluLayer('Name', 'relu1') transposedConv2dLayer(4, 4, 256, 'Stride', 2, 'Cropping', 1, 'Name', 'tconv2') batchNormalizationLayer('Name', 'bn2') reluLayer('Name', 'relu2') transposedConv2dLayer(4, 4, 128, 'Stride', 2, 'Cropping', 1, 'Name', 'tconv3') batchNormalizationLayer('Name', 'bn3') reluLayer('Name', 'relu3') transposedConv2dLayer(4, 4, 1, 'Stride', 2, 'Cropping', 1, 'Name', 'tconv4') tanhLayer('Name', 'tanh1') ]; % Define discriminator network discriminator = [ imageInputLayer([28 28 1]) convolution2dLayer(5, 20, 'Stride', 1, 'Padding', 2, 'Name', 'conv1') reluLayer('Name', 'relu1') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool1') convolution2dLayer(5, 50, 'Stride', 1, 'Padding', 2, 'Name', 'conv2') reluLayer('Name', 'relu2') maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool2') fullyConnectedLayer(500, 'Name', 'fc1') reluLayer('Name', 'relu3') fullyConnectedLayer(1, 'Name', 'fc2') sigmoidLayer('Name', 'sigmoid1') ]; % Define options for training options = trainingOptions('adam', ... 'MaxEpochs', 100, ... 'MiniBatchSize', 128, ... 'Verbose', true, ... 'Plots', 'training-progress'); % Train GAN [generator, discriminator] = trainGAN(generator, discriminator, trainImages, options); % Generate new images noise = randn(100, 1); generatedImages = predict(generator, noise); imshow(imtile(generatedImages)); ``` 这段代码定义了一个基于MNIST数据集的GAN,用于生成手写数字图像。它定义了一个具有四个转置卷积层的生成器和一个具有两个卷积层和两个全连接层的判别器。使用训练选项对GAN进行训练,然后使用生成生成新的手写数字图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值