DS树--二叉树之最大路径

DS树–二叉树之最大路径

题目描述

给定一颗二叉树的逻辑结构(先序遍历的结果,空树用字符‘0’表示,例如AB0C00D00),建立该二叉树的二叉链式存储结构

二叉树的每个结点都有一个权值,从根结点到每个叶子结点将形成一条路径,每条路径的权值等于路径上所有结点的权值和。编程求出二叉树的最大路径权值。如下图所示,共有4个叶子即有4条路径,

路径1权值=5 + 4 + 11 + 7 = 27路径2权值=5 + 4 + 11 + 2 = 22

路径3权值=5 + 8 + 13 = 26路径4权值=5 + 8 + 4 + 1 = 18

可计算出最大路径权值是27。

该树输入的先序遍历结果为ABCD00E000FG00H0I00,各结点权值为:

A-5,B-4,C-11,D-7,E-2,F-8,G-13,H-4,I-1
Alt

输入

第一行输入一个整数t,表示有t个测试数据

第二行输入一棵二叉树的先序遍历,每个结点用字母表示

第三行先输入n表示二叉树的结点数量,然后输入每个结点的权值,权值顺序与前面结点输入顺序对应

以此类推输入下一棵二叉树

输出

每行输出每棵二叉树的最大路径权值,如果最大路径权值有重复,只输出1个

输入样例:

2
AB0C00D00
4 5 3 2 6
ABCD00E000FG00H0I00
9 5 4 11 7 2 8 13 4 1

输出样例:

11
27

参考代码:

#include<iostream>
#include<queue>
#include<string>

using namespace std;

struct tree_node {
    char data{};
    int quan{};
    tree_node *left_child{}, *right_child{}, *parent = nullptr;
};

queue<int> q;
queue<tree_node *> leaf;
string str;
int pos = 0;

void create(tree_node *&node) {
    char data = str[pos++];
    if (data == '0')
        node = nullptr;
    else {
        node = new tree_node;
        node->data = data;
        node->quan = q.front();
        q.pop();
        create(node->left_child);
        if (node->left_child != nullptr)
            node->left_child->parent = node;

        create(node->right_child);
        if (node->right_child != nullptr)
            node->right_child->parent = node;

        if (node->left_child == nullptr && node->right_child == nullptr)
            leaf.push(node);
    }
}

int max_long(tree_node *&root) {
    int max = 0;
    while (!leaf.empty()) {
        int all = 0;
        tree_node *node = leaf.front();
        leaf.pop();
        while (node) {
            all += node->quan;
            node = node->parent;
        }
        if (all > max)
            max = all;
    }

    return max;
}

int main() {
    int t;
    cin >> t;
    tree_node *root;
    while (t--) {
        cin >> str;
        pos = 0;
        int n;
        cin >> n;
        while (n--) {
            int k;
            cin >> k;
            q.push(k);
        }

        create(root);
        cout << max_long(root) << endl;
    }
    return 0;
}
### 回答1: DS二叉树,也称赫夫曼,是一种用于数据压缩的形结构。它的构建过程是将一组权值作为叶子节点,通过不断合并权值最小的两个节点,最终形成一棵,使得每个叶子节点到根节点的路径上的权值之和最小。 赫夫曼的编码过程是将每个叶子节点的权值编码为一串二进制数,使得编码后的长度最短,从而实现数据压缩的目的。 以下是赫夫曼的构建与编码的代码框架: ```python class Node: def __init__(self, value, weight): self.value = value self.weight = weight self.left = None self.right = None def build_huffman_tree(data): # 构建赫夫曼 nodes = [Node(value, weight) for value, weight in data] while len(nodes) > 1: nodes.sort(key=lambda x: x.weight) left = nodes.pop(0) right = nodes.pop(0) parent = Node(None, left.weight + right.weight) parent.left = left parent.right = right nodes.append(parent) return nodes[0] def encode_huffman_tree(root): # 编码赫夫曼 codes = {} def dfs(node, code): if node is None: return if node.value is not None: codes[node.value] = code return dfs(node.left, code + '0') dfs(node.right, code + '1') dfs(root, '') return codes # 示例 data = [('a', 5), ('b', 9), ('c', 12), ('d', 13), ('e', 16), ('f', 45)] root = build_huffman_tree(data) codes = encode_huffman_tree(root) print(codes) # 输出:{'a': '1100', 'b': '1101', 'c': '100', 'd': '101', 'e': '111', 'f': '0'} ``` 以上代码中,`Node` 类表示赫夫曼的节点,包含值、权值、左子节点和右子节点四个属性。`build_huffman_tree` 函数接受一个列表 `data`,其中每个元素是一个二元组,表示一个叶子节点的值和权值。该函数返回构建好的赫夫曼的根节点。 `encode_huffman_tree` 函数接受赫夫曼的根节点,返回一个字典,表示每个叶子节点的编码。该函数使用深度优先搜索遍历赫夫曼,对于每个叶子节点,记录其值和编码。 在示例中,我们使用了一个包含 6 个叶子节点的数据集,构建了一棵赫夫曼,并对每个叶子节点进行了编码。最终输出了每个叶子节点的编码结果。 ### 回答2: 1. DS二叉树简介 DS二叉树是一种常见的数据结构,也是二叉树数据结构的一种变种。其特点是每个节点只有两个分支,即左子节点和右子节点。DS二叉树在计算机科学中有着重要的应用,例如在文件压缩、加密等领域中,常用DS二叉树来构建赫夫曼,实现数据的压缩和加密。 2. 赫夫曼简介 赫夫曼(Huffman Tree)是一种用于数据压缩和加密的方法。它是一棵带权路径最短的,即中所有叶子节点到根节点的路径长度乘以该叶子节点的权值之和最小。赫夫曼的构建可以通过DS二叉树来实现,是DS二叉树的一种典型应用。 3. 赫夫曼的构建与编码 赫夫曼的构建通过以下步骤实现: 1)将所有的数据项按照权值大小从小到大排序; 2)选取权值最小的两个节点作为新的父节点,将这两个节点从序列中删除,再将新的父节点添加到序列中; 3)重复执行第2步,直到序列中只剩下一个节点,即构建出了一棵赫夫曼。 在构建赫夫曼的过程中,可以通过DS二叉树来表示和存储节点。具体来说,可以定义一个叫做HuffmanNode的结构体,用来存储节点的权值、左右子节点和父节点等信息。同时,可以定义一个HuffmanTree类,用来实现赫夫曼的构建和编码。 HuffmanNode结构体定义如下: ``` struct HuffmanNode { int weight; // 权值 HuffmanNode* parent; // 父节点 HuffmanNode* left; // 左子节点 HuffmanNode* right; // 右子节点 }; ``` HuffmanTree类的成员函数包括: 1)createTree:用来构建赫夫曼; 2)encode:用来对数据进行编码。 createTree函数的实现如下: ``` void HuffmanTree::createTree() { // 将所有数据项节点插入到序列中 for (int i = 0; i < data.size(); i++) { HuffmanNode* node = new HuffmanNode; node->weight = data[i].weight; node->parent = nullptr; node->left = nullptr; node->right = nullptr; nodes.push(node); } // 不断从序列中选取权值最小的两个节点,构建一颗新的赫夫曼 while (nodes.size() > 1) { HuffmanNode* node1 = nodes.top(); nodes.pop(); HuffmanNode* node2 = nodes.top(); nodes.pop(); HuffmanNode *parent = new HuffmanNode; parent->weight = node1->weight + node2->weight; parent->parent = nullptr; parent->left = node1; parent->right = node2; node1->parent = parent; node2->parent = parent; nodes.push(parent); } // 保存赫夫曼的根节点 root = nodes.top(); } ``` encode函数的实现如下: ``` string HuffmanTree::encode(const string& s) { // 构建字符到编码的映射表 buildEncodingTable(root, ""); // 对输入的数据进行编码 string result; for (char c : s) { result += encodingTable[c]; } return result; } void HuffmanTree::buildEncodingTable(HuffmanNode* node, string code) { if (node == nullptr) { return; } if (node->left == nullptr && node->right == nullptr) { // 将字符和对应的编码加入到映射表中 encodingTable[node->ch] = code; } buildEncodingTable(node->left, code + "0"); buildEncodingTable(node->right, code + "1"); } ``` 在encode函数中,首先调用buildEncodingTable函数构建字符到编码的映射表,然后对输入的数据进行编码并返回。而buildEncodingTable函数则是通过递归的方式构建映射表的。在编码时,只需要将每个字符对应的编码拼接起来即可。 以上就是DS二叉树--赫夫曼的构建与编码的基本框架,可以根据需要进行调整和优化。 ### 回答3: ds二叉树,也叫赫夫曼,是一种特殊的二叉树,用于编码和解码数据。在大数据时代,赫夫曼被广泛应用于数据压缩,因为它可以用最小的比特位编码代表最频繁的字符,从而大大降低文件大小,加速数据的传输和存储。下面我们来看一下赫夫曼的构建和编码过程。 赫夫曼的构建 赫夫曼的构建需要按照以下步骤: 1.统计每个字符的出现频率,把每个字符看作一个结点,并按照频率从小到大排序。 2.取出两个频率最小的结点作为左右子结点,生成一棵新的,其权值为左右子结点权值之和。 3.把新的的权值插入有序队列中。 4.重复步骤2和3,直到队列中只剩下一个,即为赫夫曼。 下面是赫夫曼构建的代码框架: ``` struct Node{ char val; //字符值 int freq; //字符频率 Node *left; //左子结点 Node *right; //右子结点 }; struct cmp { bool operator()(Node *a, Node *b) { return a->freq > b->freq; } }; Node* buildHuffmanTree(string s){ unordered_map<char,int> mp; for(int i=0;i<s.size();i++){ mp[s[i]]++; } priority_queue<Node*, vector<Node*>, cmp> pq; for(const auto &ele:mp){ Node *tmp = new Node; tmp->val = ele.first; tmp->freq = ele.second; tmp->left = nullptr; tmp->right = nullptr; pq.push(tmp); } while(pq.size()>1){ Node *a = pq.top(); pq.pop(); Node *b = pq.top(); pq.pop(); Node *c = new Node; c->freq = a->freq + b->freq; c->left = a; c->right = b; pq.push(c); } return pq.top(); } ``` 赫夫曼编码 在赫夫曼中,从根节点一直到每个叶子结点的路径构成了该叶子结点字符的编码,左分支为0,右分支为1。赫夫曼的编码方式称为前缀编码,即任何一个字符的编码序列都不是另一个字符代码的前缀,这种编码方式保证了解码的唯一性。因为赫夫曼编码是以为基础构建的,所以我们可以使用深度优先遍历来得到每个字符的编码。 下面是赫夫曼编码的代码框架: ``` void dfs(Node* root, string path, unordered_map<char,string> &mp) { if(root->left==nullptr && root->right==nullptr){ mp[root->val] = path; return; } if(root->left){ dfs(root->left,path+"0",mp); } if(root->right){ dfs(root->right,path+"1",mp); } } unordered_map<char,string> buildHuffmanCode(Node* root) { unordered_map<char,string> mp; if(root==nullptr){ return mp; } dfs(root,"",mp); return mp; } ``` 总结 赫夫曼是一种高效的数据压缩方式,在实际应用中广泛应用于图像、音频、视频等大型文件的传输和存储。它的构建和编码过程相对简单,只需要按照一定的规则统计字符频率,然后生成二叉树并得到字符的编码,就可以将文件压缩成更小的大小。希望大家能够掌握赫夫曼的原理和实现,提高数据处理的效率和精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鷸鰥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值