计量经济学-最小二乘估计量

计量经济学-最小二乘估计量无偏性及有效性证明&区间估计与假设检验

已知:

线性
Y t = α + β X t + μ t Y_t = \alpha + \beta X_t + \mu_t Yt=α+βXt+μt
同方差
V a r ( μ i ) = V a r ( μ j ) = σ 2 Var(\mu_i) = Var(\mu_j) = \sigma^2 Var(μi)=Var(μj)=σ2
无关性
E ( μ i μ j ) = 0 E(\mu_i\mu_j) = 0 E(μiμj)=0
外生性
E ( μ i ∣ X ) = 0 E(\mu_i\mid X) = 0 E(μiX)=0
正态分布
μ i ∼ N ( 0 , σ 2 ) \mu_i \sim N(0,\sigma^2) μiN(0,σ2)

β ^ = ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 \hat{\beta} = \cfrac{\sum_{i = 1}^N(X_i - \overline X)(Y_i - \overline Y)}{\sum_{i = 1}^N(X_i - \overline X)^2} β^=i=1N(XiX)2i=1N(XiX)(YiY)

无偏性证明:

E ( β ^ o l s ∣ X ) = E ( ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 ∣ X ) = ∑ i = 1 N [ E ( X i − X ‾ ) ( Y i − Y ‾ ) ∣ X ] ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) E ( Y i − Y ‾ ∣ X ) ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) [ E ( Y i ∣ X ) − E ( Y ‾ ∣ X ) ] ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) [ E ( α + β X i + μ i ∣ X ) − E ( 1 N ∑ i = 1 N Y i ∣ X ) ] ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) ( α + β X i − α − β X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 = β ∑ i = 1 N ( X i − X ‾ ) 2 ∑ i = 1 N ( X i − X ‾ ) 2 = β \begin{aligned} E(\hat{\beta}_{ols}\mid X) & = E(\cfrac{\sum_{i = 1}^N(X_i - \overline X)(Y_i - \overline Y)}{\sum_{i = 1}^N(X_i - \overline X)^2}\mid X )\\ \\ & = \cfrac{\sum_{i = 1}^N[E(X_i - \overline X)(Y_i - \overline Y)\mid X]}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & =\cfrac{\sum_{i = 1}^N(X_i - \overline X) E (Y_i - \overline Y\mid X)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & =\cfrac{\sum_{i = 1}^N(X_i - \overline X)[ E (Y_i\mid X) - E( \overline Y\mid X)]}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & =\cfrac{\sum_{i = 1}^N(X_i - \overline X)[ E ( \alpha + \beta X_i + \mu_i\mid X) - E( \frac{1}{N}\sum_{i = 1}^NY_i\mid X)]}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & =\cfrac{\sum_{i = 1}^N(X_i - \overline X)(\alpha + \beta X_i - \alpha - \beta \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & =\cfrac{\beta \sum_{i = 1}^N(X_i - \overline X)^2}{ \sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \beta \end{aligned} E(β^olsX)=E(i=1N(XiX)2i=1N(XiX)(YiY)X)=i=1N(XiX)2i=1N[E(XiX)(YiY)X]=i=1N(XiX)2i=1N(XiX)E(YiYX)=i=1N(XiX)2i=1N(XiX)[E(YiX)E(YX)]=i=1N(XiX)2i=1N(XiX)[E(α+βXi+μiX)E(N1i=1NYiX)]=i=1N(XiX)2i=1N(XiX)(α+βXiαβX)=i=1N(XiX)2βi=1N(XiX)2=β

∵ E ( β ^ o l s ∣ X ) = β \because E(\hat{\beta}_{ols}\mid X) = \beta E(β^olsX)=β

∴ E ( E ( β ^ o l s ∣ X ) ) = E ( β ) \therefore E(E(\hat{\beta}_{ols}\mid X) ) = E(\beta) E(E(β^olsX))=E(β)

∴ E ( β ^ o l s ) = β \therefore E(\hat{\beta}_{ols}) = \beta E(β^ols)=β

有效性证明:

即证明最小二乘估计量的方差小于其他线性无偏估计量的方差

最小二乘估计方差:

β ^ o l s = ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) Y i ∑ i = 1 N ( X i − X ‾ ) 2 − ∑ i = 1 N ( X i − X ‾ ) Y ‾ ∑ i = 1 N ( X i − X ‾ ) 2 \begin{aligned} \hat{\beta}_{ols} & = \cfrac{\sum_{i = 1}^N(X_i - \overline X)(Y_i - \overline Y)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \cfrac{\sum_{i = 1}^N(X_i - \overline X)Y_i}{\sum_{i = 1}^N(X_i - \overline X)^2} - \cfrac{\sum_{i = 1}^N(X_i - \overline X)\overline Y}{\sum_{i = 1}^N(X_i - \overline X)^2} \end{aligned} β^ols=i=1N(XiX)2i=1N(XiX)(YiY)=i=1N(XiX)2i=1N(XiX)Yii=1N(XiX)2i=1N(XiX)Y

∵ ∑ i = 1 N ( X i − X ‾ ) Y ‾ = ∑ i = 1 N ( X i − X ‾ ) Y ‾ = 0 \begin{aligned} \because \sum_{i = 1}^N(X_i - \overline X)\overline Y & = \sum_{i = 1}^N(X_i - \overline X)\overline Y\\ \\ & = 0 \end{aligned} i=1N(XiX)Y=i=1N(XiX)Y=0
∴ β ^ o l s = ∑ i = 1 N ( X i − X ‾ ) Y i ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( X i − X ‾ ) ( α + β X i + μ i ) ∑ i = 1 N ( X i − X ‾ ) 2 = β ∑ i = 1 N X i ( X i − X ‾ ) + ∑ i = 1 N μ i ( X i − X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 = β ∑ i = 1 N ( X i − X ‾ ) 2 + β ∑ i = 1 N ( X i − X ‾ ) X ‾ + ∑ i = 1 N μ i ( X i − X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 = β + ∑ i = 1 N μ i ( X i − X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 \begin{aligned} \therefore \hat{\beta}_{ols} & = \cfrac{\sum_{i = 1}^N(X_i - \overline X)Y_i}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \cfrac{\sum_{i = 1}^N(X_i - \overline X)(\alpha + \beta X_i + \mu_i)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \cfrac{\beta\sum_{i = 1}^NX_i(X_i - \overline X) + \sum_{i = 1}^N\mu_i(X_i - \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \cfrac{\beta \sum_{i = 1}^N(X_i - \overline X)^2 + \beta \sum_{i = 1}^N(X_i - \overline X)\overline X +\sum_{i = 1}^N\mu_i(X_i - \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \\ & = \beta + \cfrac{\sum_{i = 1}^N\mu_i(X_i - \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2} \end{aligned} β^ols=i=1N(XiX)2i=1N(XiX)Yi=i=1N(XiX)2i=1N(XiX)(α+βXi+μi)=i=1N(XiX)2βi=1NXi(XiX)+i=1Nμi(XiX)=i=1N(XiX)2βi=1N(XiX)2+βi=1N(XiX)X+i=1Nμi(XiX)=β+i=1N(XiX)2i=1Nμi(XiX)

∴ β ^ o l s − β = ∑ i = 1 N μ i ( X i − X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 \therefore \hat{\beta}_{ols} - \beta = \cfrac{\sum_{i = 1}^N\mu_i(X_i - \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2} β^olsβ=i=1N(XiX)2i=1Nμi(XiX)

V a r ( β ^ o l s ) = E { [ β ^ o l s − E ( β ^ o l s ) ] 2 } = E [ ( β ^ o l s − β ) 2 ] = E { [ ∑ i = 1 N μ i ( X i − X ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 ] 2 } = E { [ ∑ i = 1 N ( X i − X ‾ ) μ i ∑ i = 1 N ( X i − X ‾ ) 2 ] 2 } = E { ∑ i = 1 N ( X i − X ‾ ) 2 μ i 2 + ∑ i = 1 , i ≠ j N ( X i − X ‾ ) ( X j − X ‾ ) μ i μ j [ ∑ i = 1 N ( X i − X ‾ ) 2 ] 2 } = ∑ i = 1 N ( X i − X ‾ ) 2 E ( μ i 2 ) + ∑ i = 1 , i ≠ j N ( X i − X ‾ ) ( X j − X ‾ ) E ( μ i μ j ) [ ∑ i = 1 N ( X i − X ‾ ) 2 ] 2 = σ 2 ∑ i = 1 N ( X i − X ‾ ) 2 [ ∑ i = 1 N ( X i − X ‾ ) 2 ] 2 = σ 2 ∑ i = 1 N ( X i − X ‾ ) 2 \begin{aligned} Var(\hat{\beta}_{ols}) & = E\{[\hat{\beta}_{ols} - E(\hat{\beta}_{ols})]^2\}\\ \\ & = E[(\hat{\beta}_{ols} - \beta)^2]\\ \\ & = E\{[\cfrac{\sum_{i = 1}^N\mu_i(X_i - \overline X)}{\sum_{i = 1}^N(X_i - \overline X)^2}]^2\}\\ \\ & = E\{[\cfrac{\sum_{i = 1}^N(X_i-\overline X)\mu_i}{\sum_{i = 1}^N(X_i - \overline X)^2}]^2\}\\ \\ & = E\{\cfrac{\sum_{i = 1}^N(X_i - \overline X)^2\mu_i^2 + \sum_{i = 1,i\ne j}^N(X_i - \overline X)(X_j - \overline X)\mu_i\mu_j}{[\sum_{i = 1}^N(X_i - \overline X)^2]^2}\}\\ \\ & = \cfrac{\sum_{i = 1}^N(X_i - \overline X)^2E(\mu_i^2) + \sum_{i = 1,i\ne j}^N(X_i - \overline X)(X_j - \overline X)E(\mu_i\mu_j)}{[\sum_{i = 1}^N(X_i - \overline X)^2]^2}\\ \\ & = \cfrac{\sigma^2\sum_{i = 1}^N(X_i - \overline X)^2}{[\sum_{i = 1}^N(X_i - \overline X)^2]^2}\\ \\ & = \cfrac{\sigma^2}{\sum_{i = 1}^N(X_i - \overline X)^2}\\ \end{aligned} Var(β^ols)=E{[β^olsE(β^ols)]2}=E[(β^olsβ)2]=E{[i=1N(XiX)2i=1Nμi(XiX)]2}=E{[i=1N(XiX)2i=1N(XiX)μi]2}=E{[i=1N(XiX)2]2i=1N(XiX)2μi2+i=1,i=jN(XiX)(XjX)μiμj}=[i=1N(XiX)2]2i=1N(XiX)2E(μi2)+i=1,i=jN(XiX)(XjX)E(μiμj)=[i=1N(XiX)2]2σ2i=1N(XiX)2=i=1N(XiX)2σ2

其他线性无偏估计方差:

假设: β \beta β的任一线性估计量为 ∑ i = 1 N ω i Y i \sum_{i=1}^N\omega_iY_i i=1NωiYi
因此:
E ( β ^ ∗ ) = ∑ i = 1 N ω i E ( Y i ) = ∑ i = 1 N ω i E ( α + β X i ) = α ∑ i = 1 N ω i + β ∑ i = 1 N ω i X i \begin{aligned} E(\hat{\beta}^*) &= \sum_{i=1}^N\omega_iE(Y_i)\\ \\ &= \sum_{i=1}^N\omega_iE(\alpha + \beta X_i)\\ \\ &= \alpha \sum_{i=1}^N\omega_i + \beta \sum_{i=1}^N\omega_i X_i\\ \end{aligned} E(β^)=i=1NωiE(Yi)=i=1NωiE(α+βXi)=αi=1Nωi+βi=1NωiXi
∵ β \because \beta β为无偏估计量
∴ E ( β ^ ∗ ) = β \therefore E(\hat{\beta}^*) = \beta E(β^)=β

∴ \therefore α ∑ i = 1 N ω i = 0 \alpha \sum_{i=1}^N\omega_i = 0 αi=1Nωi=0 ∑ i = 1 N ω i X i = 1 \sum_{i=1}^N\omega_i X_i = 1 i=1NωiXi=1

V a r ( β ^ ∗ ) = V a r ( ∑ i = 1 N ω i Y i ) = ∑ i = 1 N ω i 2 V a r ( Y i ) = ∑ i = 1 N ω i 2 V a r ( α + β X i + μ i ) = ∑ i = 1 N ω i 2 V a r ( μ i ) = σ 2 ∑ i = 1 N ω i 2 \begin{aligned} Var(\hat{\beta}^*) &= Var(\sum_{i=1}^N\omega_iY_i)\\ \\ &= \sum_{i=1}^N\omega_i^2 Var(Y_i)\\ \\ &= \sum_{i=1}^N\omega_i^2 Var(\alpha + \beta X_i + \mu_i)\\ \\ &= \sum_{i=1}^N\omega_i^2 Var(\mu_i)\\ \\ &= \sigma ^2\sum_{i=1}^N\omega_i^2\\ \end{aligned} Var(β^)=Var(i=1NωiYi)=i=1Nωi2Var(Yi)=i=1Nωi2Var(α+βXi+μi)=i=1Nωi2Var(μi)=σ2i=1Nωi2

∵ \because 柯西不等式

∴ ∑ i = 1 N ω i 2 ∑ i = 1 N ( X i − X ‾ ) 2 ≥ [ ∑ i = 1 N [ ω i × ( X i − X ‾ ) ] ] 2 ≥ ( ∑ i = 1 N ω i X i − X ‾ ∑ i = 1 N ω i ) 2 ≥ 1 \begin{aligned} \therefore \sum_{i=1}^N\omega_i^2\sum_{i = 1}^N(X_i - \overline X)^2 &\geq \big[\sum_{i=1}^N[\omega_i\times(X_i - \overline{X})]\big]^2\\ \\ &\geq \big( \sum_{i=1}^N\omega_iX_i -\overline{X}\sum_{i=1}^N \omega_i\big)^2\\ \\ &\geq 1 \end{aligned} i=1Nωi2i=1N(XiX)2[i=1N[ωi×(XiX)]]2(i=1NωiXiXi=1Nωi)21

∴ \therefore ∑ i = 1 N ω i 2 ≥ 1 ∑ i = 1 N ( X i − X ‾ ) 2 \sum_{i=1}^N\omega_i^2\geq\cfrac{1}{\sum_{i = 1}^N(X_i - \overline X)^2} i=1Nωi2i=1N(XiX)21

∴ \therefore σ 2 ∑ i = 1 N ω i 2 ≥ σ 2 ∑ i = 1 N ( X i − X ‾ ) 2 \sigma ^2\sum_{i=1}^N\omega_i^2 \geq \cfrac{\sigma^2}{\sum_{i = 1}^N(X_i - \overline X)^2} σ2i=1Nωi2i=1N(XiX)2σ2

V a r ( β ^ ∗ ) ≥ V a r ( β ^ o l s ) Var(\hat{\beta}^*) \geq Var(\hat{\beta}_{ols}) Var(β^)Var(β^ols)

置信区间

∵ V a r ( β ^ o l s ) = σ 2 ∑ i = 1 N ( X i − X ‾ ) 2 \because Var(\hat{\beta}_{ols}) = \cfrac{\sigma^2}{\sum_{i=1}^N(X_i-\overline X)^2} Var(β^ols)=i=1N(XiX)2σ2
∴ S e ( β ^ o l s ) = σ ∑ i = 1 N ( X i − X ‾ ) 2 \therefore Se(\hat{\beta}_{ols}) = \cfrac{\sigma}{\sqrt{\sum_{i=1}^N(X_i-\overline X)^2}} Se(β^ols)=i=1N(XiX)2 σ
∵ σ \because \sigma σ为未知量

∴ \therefore 需要用残差 e e e来估计 σ \sigma σ

σ ^ 2 = ∑ i = 1 N e i 2 n − 2 \hat{\sigma}^2 = \cfrac{\sum_{i=1}^Ne_i^2}{n-2} σ^2=n2i=1Nei2

∵ \because { Y i = α ^ + β ^ X i + e i Y ‾ = α ^ + β ^ X ‾ \begin{cases} Y_i &= \hat{\alpha} + \hat{\beta}X_i + e_i\\ \\ \overline Y &= \hat{\alpha} + \hat{\beta}\overline X\\ \end{cases} YiY=α^+β^Xi+ei=α^+β^X

∴ \therefore Y i − Y ‾ = β ^ ( X i − X ‾ ) + e i Y_i - \overline Y = \hat{\beta}(X_i - \overline X) + e_i YiY=β^(XiX)+ei

∴ \therefore e i = ( Y i − Y ‾ ) − β ^ ( X i − X ‾ ) e_i = (Y_i - \overline Y) - \hat{\beta}(X_i - \overline X) ei=(YiY)β^(XiX)

∴ \therefore ∑ i = 1 N e i 2 = ∑ i = 1 N [ ( Y i − Y ‾ ) − β ^ ( X i − X ‾ ) ] 2 = ∑ i = 1 N ( Y i − Y ‾ ) 2 − 2 β ^ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) + β ^ 2 ∑ i = 1 N ( X i − X ‾ ) 2 = ∑ i = 1 N ( Y i − Y ‾ ) 2 + β ^ [ β ^ ∑ i = 1 N ( X i − X ‾ ) 2 − 2 ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ] \begin{aligned} \sum_{i=1}^Ne_i^2 &= \sum_{i=1}^N [(Y_i - \overline Y) - \hat{\beta}(X_i - \overline X)]^2\\ \\ &= \sum_{i=1}^N (Y_i - \overline Y)^2 - 2\hat{\beta}\sum_{i=1}^N (X_i - \overline X)(Y_i - \overline Y) + \hat{\beta}^2 \sum_{i=1}^N (X_i - \overline X)^2\\ \\ &= \sum_{i=1}^N (Y_i - \overline Y)^2 + \hat{\beta}\bigg[ \hat{\beta}\sum_{i=1}^N(X_i - \overline X)^2 - 2\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)\bigg]\\ \end{aligned} i=1Nei2=i=1N[(YiY)β^(XiX)]2=i=1N(YiY)22β^i=1N(XiX)(YiY)+β^2i=1N(XiX)2=i=1N(YiY)2+β^[β^i=1N(XiX)22i=1N(XiX)(YiY)]

∵ \because β ^ = ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 \hat{\beta} = \cfrac{\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)}{\sum_{i=1}^N(X_i - \overline X)^2} β^=i=1N(XiX)2i=1N(XiX)(YiY)

∴ \therefore ∑ i = 1 N e i = ∑ i = 1 N ( Y i − Y ‾ ) 2 + β ^ [ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ i = 1 N ( X i − X ‾ ) 2 ⋅ ∑ i = 1 N ( X i − X ‾ ) 2 − 2 ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ]   = ∑ i = 1 N ( Y i − Y ‾ ) 2 − β ^ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) \begin{aligned}\sum_{i=1}^N e_i &= \sum_{i=1}^N(Y_i - \overline Y)^2 + \hat{\beta}\bigg[\cfrac{ \sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)}{ \sum_{i=1}^N(X_i - \overline X)^2}\cdot \sum_{i=1}^N(X_i - \overline X)^2 - 2 \sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)\bigg]\ \\ &= \sum_{i=1}^N(Y_i - \overline Y)^2 - \hat{\beta}\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)\\ \end{aligned} i=1Nei=i=1N(YiY)2+β^[i=1N(XiX)2i=1N(XiX)(YiY)i=1N(XiX)22i=1N(XiX)(YiY)] =i=1N(YiY)2β^i=1N(XiX)(YiY)

∴ \therefore σ ^ 2 = ∑ i = 1 N ( Y i − Y ‾ ) 2 − β ^ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) n − 2 \hat{\sigma}^2 = \cfrac{\sum_{i=1}^N(Y_i - \overline Y)^2 - \hat{\beta}\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)}{n-2} σ^2=n2i=1N(YiY)2β^i=1N(XiX)(YiY)

∴ \therefore V a r ( β ^ o l s ) = ∑ i = 1 N ( Y i − Y ‾ ) 2 − β ^ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ( n − 2 ) ∑ i = 1 N ( X i − X ‾ ) 2 Var(\hat{\beta}_{ols}) = \cfrac{\sum_{i=1}^N(Y_i - \overline Y)^2 - \hat{\beta}\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)}{(n-2)\sum_{i=1}^N(X_i-\overline X)^2} Var(β^ols)=(n2)i=1N(XiX)2i=1N(YiY)2β^i=1N(XiX)(YiY)

∴ \therefore S e ( β ^ o l s ) = ∑ i = 1 N ( Y i − Y ‾ ) 2 − β ^ ∑ i = 1 N ( X i − X ‾ ) ( Y i − Y ‾ ) ( n − 2 ) ∑ i = 1 N ( X i − X ‾ ) 2 Se(\hat{\beta}_{ols}) = \sqrt{\cfrac{\sum_{i=1}^N(Y_i - \overline Y)^2 - \hat{\beta}\sum_{i=1}^N(X_i - \overline X)(Y_i - \overline Y)}{(n-2)\sum_{i=1}^N(X_i-\overline X)^2}} Se(β^ols)=(n2)i=1N(XiX)2i=1N(YiY)2β^i=1N(XiX)(YiY)

假设检验

  • 22
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鷸鰥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值