from multiprocessing import Manager
queue = manager.Queue(maxsize=16384)
当你执行queue.put(data)操作时,如果队列已满(即队列中的元素数量已经达到maxsize指定的数量),那么PUT操作会被阻塞,也就是说这一行代码会被暂时挂起不往下执行,直到队列中有元素被取走,队列有足够的空间放入新的元素,put操作才会继续执行并把元素放入队列。
需要注意的是,put方法还有一个可选参数block,默认为True。当block=False时,如果队列已满,put操作将会立即抛出queue.Full异常,而不会发生阻塞。
- “消费和心跳是在同一个线程中进行的,心跳会强制中断消费吗?”
不会。在Kafka客户端的设计中,消费消息(即poll操作)和发送心跳是在同一个线程中进行的,但这并不意味着心跳会强制中断消息消费操作。
在Kafka Consumer的实现中,心跳发送采用了轮询的方式,即只有当执行poll操作时,才可能会发送心跳。而大部分的时间,线程都在执行消息消费操作,因此并不会被心跳操作强制中断。只有当消息消费完毕,线程进入轮询时,心跳操作才可能被执行。
但是,如果消息消费速度太慢,或者每一次消费的消息数(由
max.poll.records
控制)过大,导致一次poll操作的处理时间过长,可能会导致在一段时间内(由session.timeout.ms
控制)没有发送任何心跳给Kafka Broker,此时Kafka Broker便会误以为该Consumer已经离线,从而触发了rebalance操作,重新分配partition。
- “下游的kafka数据很多时,会影响上游的kafka数据生产吗?”
一般来说,下游(消费者)对Kafka数据的消费速度,不会直接影响到上游(生产者)对Kafka的数据生产。因为在Kafka的设计中,生产者和消费者是解耦和的,各自基于自己的缓冲策略和处理速率进行处理。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
(备注大数据获取)**
[外链图片转存中…(img-lh5tG9RI-1712526355307)]