算法学习 | day35/60 整数拆分/不同的二叉搜索树

一、题目打卡

        1.1 整数划分(答案思路)

        题目打卡:. - 力扣(LeetCode)

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1,INT_MIN);
        dp[0] = 0;
        dp[1] = 0;
        for(int i = 2; i < n + 1;i++){
            for(int j = 1; j < i;j++){
                dp[i] = max(dp[i],max(j*(i-j),j*dp[i-j]));
            }
        }
        return dp[n];
    }
};

        状态的定义还是比较清楚的,主要是卡在了状态转移方程上,主要的思想是分了两种进行比较:一种是分为两个数相乘,另一个是三个及三个以上相乘,前面的那个完成的方法是通过两层递归进行枚举,后者则是递推的一个关键,三个及三个以上,其实就是两个中固定一个,然后拆分另一个,而这个拆分的结果,就是由前面的内容递推而来的。

        1.2 不同的二叉搜索树

        题目链接:. - 力扣(LeetCode)

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1);
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i < n + 1;i++){
            // dp[i] = 2 * dp[i - 1] + dp[i - 2];
            for(int j = 1; j < i + 1;j++){
                dp[i] += dp[j-1]*dp[i-j];
            }
        }
        return dp[n];
    }
};

        

        自己尝试找了一下规律,但是没能解释的通,我这个解释的方法是以每次添加节点对当前所有可能结果的一个影响来计算的,但是这样的话就无法解决插入在两个数字中间的一个情况,所以还是按照答案思路写,把根节点的左右节点数值作为递推的依据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值