QR分解的四种常见方法

一、gram-schmidt正交法之CGS正交法

1)相较于MGS的特点:全部一起消从而得到\alpha _{i}

2)原理解释:给定矩阵A_{mn},将其看成由n个列向量组成的向量矩阵A_{mn}=\left \{ \alpha_{1} ,\alpha _{2,...,}\alpha _{n}\right \},分别给\alpha _{1},\alpha _{2},...,\alpha _{n}进行正交化、单位化

正交化:

\alpha _{1}=\alpha _{1}

\alpha _{2}=\alpha _{2}-\frac{\alpha _{2}'\alpha _{1}}{\alpha _{1}'\alpha _{1}}\alpha _{1},...

单位化:\alpha_{1}=\alpha _{1}/norm(\alpha _{1}),\alpha _{2}=\alpha _{2}/norm(\alpha _{2}),...

3)代码示例

二、gram-schmidt正交法之MGS正交法

1)MGS(modified gram-schmidt)相比于CGS的特点:一个一个消得\alpha _{i}

2)原理解释:

上帝给我们一个需要单位正交化的矩阵Anxn=(a1,a2,...,an)和标准正交基q1、q2、q3...qn,假设dimension(A)=3,则有以下为步骤:

第一步,a1=a1

第二步,

  1.  \alpha12=q1*a2
  2. a2=a2-q1*\alpha12
  3. \alpha22=q2*a2
  4. a2=a2-q2*\alpha22

第三步

  1. \alpha13=q1'*a3
  2. a3=a3-q1*\alpha13
  3. \alpha23=q2'*a3
  4. a3=a3-q2*\alpha23
  5. \alpha33=q3'*a3
  6. a3=a3-q3*\alpha33

第四步 ai=ai/norm(ai),i=1、2、3

所以得到单位正交阵(a1,a2,a3),上面的标准正交基我们在之前的学习中遇到的是(e1,e2,e3,...,en)=diag(n)

3)代码示例:

n=15;
A=rand(n);
st_b=diag(n);%standard_base
alpha=zeros(n);
for j=2:n    
    for i=1:j
        alpha(i,j)=st_b(i)'*A(:,j);
        A(:,j)=A(:,j)-q1*alpha(i,j);
    end
end
for i=1:n
    A(:,i)=A(:,i)/norm(A(:,i));
end
三、householder 镜像法householder reflections

原理说明:

对于一个基w(注意nrom(w)=1),若想要得到x关于该基w的超平面镜像映射,(将矩阵反射到以标准基为基的向量空间里面)可使用H=I-2ww^{T},使得x=\left ( x_{1},x_{2},x_{3},...,x_{n} \right )变为x=\left ( x_{1}-nrom(x_{}),0,0,...,0 \right )

在上机时,为了简化,用v/norm(v)(其中v=x-norm(x)e_{1})代替w,得2ww^{T}=2vv^{T}/(v^{T}v)

代码:在下列代码中,我用wvv^{T}(其中w=2/(v^{T}v))代替2vv^{T}/(v^{T}v)

四、Givens旋转法Givens rotations

原理说明:现在有两个向量x1,x2,我想要将他们旋转到标准基的向量空间里,则使用矩阵G即可

G=\begin{pmatrix} cos(\theta ) & sin(\theta )\\ -sin(\theta ) & cos(\theta ) \end{pmatrix},cos(\theta )=x_{1}/\sqrt{x_{1}^{2}+x_{2}^{2}},sin(\theta )=x_{2}/\sqrt{x_{1}^{2}+x_{2}^{2}}

G\begin{pmatrix} x_{1}\\ x_{2}\end{pmatrix}=\begin{pmatrix} x_{1}^{hat}\\ 0\end{pmatrix}

代码:

n=10;
m=n;
A=orth(rand(m,n));
A_origional=A;
C_s=zeros(m,n);
for j=1:n-1
    for i=m:-1:(j+1)
        if abs(A(i,j))>=abs(A(j,j))
           t=A(j,j)/A(i,j);
           sign=A(i,j)/norm(A(i,j));
           s=sign*1/sqrt(1+t^2);
           c=t*s;
        else
            t=A(i,j)/A(j,j);
            sign=A(j,j)/norm(A(j,j));
            c=sign*1/sqrt(1+t^2);
            s=t*c;
        end
        A(j,:)=c*A(j,:)+s*A(i,:);
        A(i,:)=-s*A(j,:)+c*A(i,:);
        C_s(i,j)=c;
        if s>0 
            C_s(m-i+1,n-j+1)=1;
        else
            C_s(m-i+1,n-j+1)=-1;
        end
    end
end
Q=A_origional/A;//这是使用Q=A*R^(-1)
G=eye(m,n);
E=eye(m,n);
ei=zeros(n,1);
ej=zeros(n,1);
for j=1:(n-1)//此循环使用了Q=G1*G2*G3...*G((n-1)*(n+2)/2)
    ej(j)=1;
    for i=m:-1:(j+1)
        s=sqrt(1-C_s(i,j)^2)*C_s(m-i+1,n-j+1);
        ei(i)=1;
        G0=E+s*(ei*ej'-ej*ei')+(c-1)*(ei*ei'+ej*ej');
        G=G*G0;
        ei(i)=0;
    end
    ej(j)=0;
end

我有个问题想请教正在看这篇文章的你:我在使用GIVENS求QR分解时,Q=A/R求得的Q不等于Q=G1*G2*G3...Q((n-1)*(n+2)/2)得到的Q,是我无意中放大误差了还是代码出现错误?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值