实Schur标准形之QR迭代法

什么是实Schur标准形

使用“方法1”来计算实Schur标准形的缺点:运算量太大,收敛速度太慢

为什么使用实Schur标准形

实矩阵的QR运算中会出现复共轭特征值,通过Am=QmRm,Am+1=RmQm所得的Am逼近的可能不是一个上三角阵,但会逼近实Schur标准形

运算量小且收敛速度快的计算实Schur标准形的方法

上Hessenberg化

step one:使用Householder将目标矩阵A化成Hessenberg矩阵

\begin{pmatrix} a_{11} & a_{12}& a_{13} &... \\ a_{21}& a_{22} & a_{23} & ...\\ 0& a_{32} & a_{33} &... \\ 0& 0& a_{43}&... \\ ...&...&...&... \end{pmatrix}

step two:对化得的Hessenberg矩阵使用n-1次Givens旋转消元,得到上三角矩阵R,即得全部特征值\lambda _{i}=R_{ii},i=1,2,...,n

step three:\widetilde{H}=RP^{T},时间复杂度为o(n^2)

原点位移的QR迭代法
缺点:

用在有复共轭特征值的矩阵上不能期待加速收敛作用,此时需要使用双重步位移QR迭代法

收敛效果:

上Hessemberg化和位移的使用都达到了加速收敛的效果

双重步位移的QR迭代法

基本思想:将两步原点位移的QR迭代合并为一步,以避免复数运算,实现给有复共轭特征值的矩阵A加速收敛的目的

迭代格式:

算法:

隐式QR算法

功能:判断迭代过程中产生的上Hessenberg矩阵的次对角元什么时候可以忽略不计

使用方法:满足条件|h_{i+1,i}|\leq (|h_{i,i}|+|h_{i+1,i+1}|)u,就视h_{i+1,i}为0;u代表机器精度,是相对误差|h_{j,j}-h_{j+1,j+1}|/|h_{j,j}|or|h_{j,j}-h_{j+1,j+1}|/|h_{j+1,j+1}|,(j=1,2,...,n-1)的上限或由浮点数|h_{j,j}-h_{j+1,j+1}|/|h_{j,j}|or|h_{j,j}-h_{j+1,j+1}|/|h_{j+1,j+1}|,(j=1,2,...,n-1)生成(将相对误差表示成浮点数形式然后计算出机器精度u),关于后者的详细参考徐树芳、高立、张平文的《数值线性代数》第二版的2.5.1小节

算法:

结束loop这一层循环的条件忘记加了,就是当t=k(意味着没有不可约Hessenberg矩阵)时结束loop这一层循环

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值