会员数据化运营(二)

案例:基于嵌套Pipeline和FeatureUnion符合数据工具流的营销响应预测

案例背景:

有关会员预测的实际应用。会员部门在做会员营销时,希望通过数据预测在下一次营销活动时,响应活动会员的具体名单和相应概率,以此来制定针对性的营销策略。

技术重点:

通过管道方法方法将多个特征处理工程组合起来,然后形成特征工程的pipeline,再将特征工程的pipeline与RandomForestClassifier组合起来形成复合Pipeline。

part 1 导入库

import time #用来记录不同算法参数下模型的运行时间
import numpy as np
import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis #降维转换
from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier #集成算法
#RandomForestClassifier 最终分类预测模型训练和预测
#ExtraTreesClassifier 配合PFE提取重要特征
from sklearn.feature_selection import RFE #配合ExtraTreesClassifier使用
from sklearn.model_selection import cross_val_score,StratifiedKFold #交叉检验
from sklearn.pipeline import Pipeline,FeatureUnion #管道应用
from imblearn.over_sampling import SMOTE #过抽样处理库,做样本均衡处理
from sklearn.metrics import f1_score,accuracy_score,precision_score #模型拟合效果评估

part 2 读取数据

raw_data = pd.read_excel('order.xlsx',sheet_name=0)

part 3 数据审查

#查看基本状态:
print('records:{0} features:{1}'.format(raw_data.shape[0],(raw_data.shape[1]-1)))

#查看缺失值:
print('NaN records count:',raw_data.isnull().any(axis=1).count())
na_cols = raw_data.isnull().any()
print('NaN cols',na_cols[na_cols]==True)

#查看样本均衡情况:
print('sample distribution:',raw_data['value_level'].groupby(raw_data['response']).count())

————————————————————————————————————————————————————————————————————————————
sample distribution: response
0    30415
1     9584

 使用groupby以response为主体对value_level做计数汇总

part 4 数据预处理

#Nan处理:
na_rules = {'age' : raw_data['age'].mean(),
            'total_pageviews' :  raw_data['total_pageviews'].mean(),
            'edu' : raw_data['edu'].median(),
            'edu_ages' : raw_data['edu_ages'].median(),
            'user_level' : raw_data['user_level'].median(),
            'industry' : raw_data['industry'].median(),
            'act_level' : raw_data['act_level'].median(),
            'sex' : raw_data['sex'].median(),
            'red_money' : raw_data['red_money'].mean(),
            'region' : raw_data['region'].median()
            }
raw_data = raw_data.fillna(na_rules)
print('Check NA exists:', raw_data.isnull().any().sum())

#分割特征和目标:
num = int(0.7*raw_data.shape[0])
x,y = raw_data.drop('response',axis=1),raw_data['response']
x_train,x_test = x.iloc[:num,:],x.iloc[num:,:]
y_train,y_test = y.iloc[:num],y.iloc[num:]

#样本均衡:
model_smote = SMOTE()
x_smote_resampled,y_smote_resampled = model_smote.fit_resample(x_train,y_train)

part 5 模型训练

model_etc = ExtraTreesClassifier()
model_rfe = RFE(model_etc) #RFE方法提取重要特征
model_lda = LinearDiscriminantAnalysis() #LDA模型对象
model_rf = RandomForestClassifier() #分类对象

使用两类pipeline:

第一类:FetureUnion,用于将多个转换后的特征组合起来,然后基于组合后的特征做进一步后续应用。通过RFE和LDA得到特征组合

第二类:Pipeline,将转换特征与后续模型结合起来。将FeatureUnion和RandomForestClassifier组合应用。

# 构建带有嵌套的pipeline
pipelines = Pipeline([
    ('feature_union', FeatureUnion(  # 组合特征pipeline
        transformer_list=[
            ('model_rfe', model_rfe),  # 通过RFE中提取特征
            ('model_lda', model_lda),  # 通过LDA提取特征
        ],
        transformer_weights={  # 建立不同特征模型的权重
            'model_rfe': 1,  # RFE模型权重
            'model_lda': 0.8,  # LDA模型权重
        },
    )),
    ('model_rf', model_rf),  # rf模型对象
])

#设置pipe值
pipelines.set_params(feature_union__model_rfe__estimator__n_estimators = 20)
pipelines.set_params(feature_union__model_rfe__estimator__n_jobs = -1)
pipelines.set_params(feature_union__model_rfe__n_features_to_select = 20)
pipelines.set_params(feature_union__model_lda__n_components = 1)
pipelines.set_params(feature_union__n_jobs = -1)

#pipeline检验
cv = StratifiedKFold(3) #交叉检验
score_list = list()
time_list = list()
n_estimators = [10,50,100]
for parameter in n_estimators : 
    t1 = time.time()
    print('set parameters: %s ' %parameter)
    pipelines.set_params(model_rf__n_estimators = parameter)
    score_tmp = cross_val_score(pipelines,x_train,y_train,scoring='accuracy',cv=cv,n_jobs=1) #使用交叉检验计算得分
    time_list.append(time.time() - t1)
    score_list.append(score_tmp)

#组合交叉检验得分和详细数据
time_pd = pd.DataFrame.from_dict({'n_estimators' : n_estimators,'time' :time_list})
score_pd = pd.DataFrame(score_list,columns=[''.join(['score',str(i+1)]) for i in range(len(score_list))])
pd_merge = pd.concat((time_pd,score_pd),axis=1)
pd_merge['score_mean'] = pd_merge.iloc[:,2:-1].mean(axis=1)
pd_merge['score_std'] = pd_merge.iloc[:,2:-2].std(axis=1)
print(pd_merge.head())

#将最优参数设置当模型中,并训练pipelines
pipelines.set_params(model_rf__n_estimators = 50)
pipelines.fit(x_train,y_train)

 

#组合交叉检验得分和详情数据结果:  
n_estimators       time    score1    score2    score3  score_mean   
0            10  26.566431  0.881281  0.877424  0.878924    0.879353  \
1            50  27.172450  0.889103  0.890710  0.888675    0.889907   
2           100  26.910383  0.887925  0.891139  0.888246    0.889532   

   score_std  
0   0.002728  
1   0.001136  
2   0.002273  

score_mean的得分越高越好,越高说明模型的预测越准;score_std越小越好,越小说明了不同交叉检验次数下的结果越稳定;time越小越好,越小意味着耗时更短。

part 6 模型效果检验

pre_test = pipelines.predict(x_test)
score = [i(y_test,pre_test) for i in [f1_score,accuracy_score,precision_score]]
print('scores result: f1: {0} , accuracy: {1} , precision: {2}'.format(score[0],score[1],score[2]))

————————————————————————————————————————————————————————————————————————————————————
scores result: f1: 0.7596589878469073 , accuracy: 0.8895833333333333 , precision: 0.790785498489426

准确度为0.8895,模型的均值为0.888,结果与交叉检验时模型的结果基本一致,说明模型本身效果不错。

part 7 预测新数据集

#基本数据过程:
new_data = pd.read_excel('order.xlsx',sheet_name=1)
print('records:{0} features:{1}'.format(new_data.shape[0],(new_data.shape[1])))

print('NaN records count:',new_data.isnull().any(axis=1).count())
new_data_fillna = new_data.fillna(na_rules)

#预测概率:
pre_labels = pd.DataFrame(pipelines.predict(new_data_fillna), columns=['labels'])
pre_pro = pd.DataFrame(pipelines.predict_proba(new_data_fillna),columns=['pro1','pro2'])
predict_pd = pd.concat((pre_labels,pre_pro),axis=1)
print(predict_pd.head())

********************************
   labels  pro1  pro2
0       0  0.92  0.08
1       0  0.92  0.08
2       0  0.98  0.02
3       0  1.00  0.00
4       0  0.88  0.12

#保存到文件
writer = pd.ExcelWriter('order_predict_result.xlsx')
predict_pd.to_excel(writer,'Sheet1')
writer._save()
writer.close()

总结:

该案例为预测案例,因此没有分析型数据结论

注意点:

本案例中的特征选择的数量是影响分类结果评估与否的关键因素之一,一般来说,特征数量越多通常意味着分类准确率越高。

Pipeline应用的目的不在于提升代码本身的性能等方面,而在于对复杂对象的统一管理上。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值